Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma.

Clin Cancer Res

Department of Oncology, Institute of Clinical Sciences, and Laboratory of Clinical Pathology and Cytology, Sahlgrenska Academy at University of Gothenburg, Gula stråket 2, Gothenburg, Sweden.

Published: August 2010

Purpose: Deregulation of key cellular pathways is fundamental for the survival and expansion of neoplastic cells. In cancer, regulation of gene transcription can be mediated in a variety of ways. The purpose of this study was to assess the impact of gene dosage on gene expression patterns and the effect of other mechanisms on transcriptional levels, and to associate these genomic changes with clinicopathologic parameters.

Experimental Design: We screened 97 invasive diploid breast tumors for DNA copy number alterations and changes in transcriptional levels using array comparative genomic hybridization and expression microarrays, respectively.

Results: The integrative analysis identified an increase in the overall number of genetic alterations during tumor progression and 15 specific genomic regions with aberrant DNA copy numbers in at least 25% of the patient population, i.e., 1q22, 1q22-q23.1, 1q25.3, 1q32.1, 1q32.1-q32.2, 8q21.2-q21.3, 8q22.3, 8q24.3, and 16p11.2 were recurrently gained, whereas 11q25, 16q21, 16q23.3, and 17p12 were frequently lost (P < 0.01). An examination of the expression patterns of genes mapping within the detected genetic aberrations identified 47 unique genes and 1 Unigene cluster significantly correlated between the DNA and relative mRNA levels. In addition, more malignant tumors with normal gene dosage levels displayed a recurrent overexpression of UBE2C, S100A8, and CBX2, and downregulation of LOC389033, STC2, DNALI1, SCUBE2, NME5, SUSD3, SERPINA11, AZGP1, and PIP.

Conclusions: Taken together, our findings suggest that the dysregulated genes identified here are critical for breast cancer initiation and progression, and could be used as novel therapeutic targets for drug development to complement classical clinicopathologic features.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-10-0889DOI Listing

Publication Analysis

Top Keywords

gene dosage
12
expression patterns
12
dosage gene
8
gene expression
8
diploid breast
8
transcriptional levels
8
dna copy
8
gene
6
clinical implications
4
implications gene
4

Similar Publications

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Background: Women are disproportionately affected by Alzheimer's disease (AD) and exhibit greater AD neuropathology than men. Women possess two X chromosomes, with one randomly silenced across each cell for dosage compensation. X chromosome inactivation (XCI) is not complete, and XCI-escaping genes provide a promising avenue of discovery for biological pathways driving sex-specific AD risk.

View Article and Find Full Text PDF

Background: APOE*4 is the strongest genetic risk for late-onset Alzheimer's disease (AD), but other genetic loci may counter its detrimental effect, providing therapeutic avenues. Expanding beyond non-Hispanic White subjects, we sought to additionally leverage genetic data from non-Hispanic and Hispanic subjects of admixed African ancestry to perform trans-ancestry APOE*4-stratified GWAS, anticipating that allele frequency differences across populations would boost power for gene discovery.

Method: Participants were ages 60+, of European (EU; ≥75%) or admixed African (AFR; ≥25%) ancestry, and diagnosed as cases or controls.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.

Background: Several studies have indicated sex-specific genetic risk for Alzheimer's disease (AD), but these were centered on non-Hispanic White individuals of European ancestry. We sought to identify sex-specific genetic variants for AD in non-Hispanic and Hispanic subjects of admixed African ancestry.

Method: Participants were ages 60+, of African ancestry (≥25%), and diagnosed as cases or controls.

View Article and Find Full Text PDF

Background: The X-chromosome remains largely unexplored in Alzheimer's disease (AD). We performed the first, stratified X-wide association study (XWAS) of AD to chart the role of X-chromosome genetic variation in AD sexual dimorphism and heterogeneity of APOE*4-related AD risk.

Method: The study overview is shown in Figure 1A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!