Background: The Ralstonia solanacearum species complex includes thousands of strains pathogenic to an unusually wide range of plant species. These globally dispersed and heterogeneous strains cause bacterial wilt diseases, which have major socio-economic impacts. Pathogenicity is an ancestral trait in R. solanacearum and strains with high genetic variation can be subdivided into four phylotypes, correlating to isolates from Asia (phylotype I), the Americas (phylotype IIA and IIB), Africa (phylotype III) and Indonesia (phylotype IV). Comparison of genome sequences strains representative of this phylogenetic diversity can help determine which traits allow this bacterium to be such a pathogen of so many different plant species and how the bacteria survive in many different habitats.
Results: The genomes of three tomato bacterial wilt pathogens, CFBP2957 (phy. IIA), CMR15 (phy. III) and PSI07 (phy. IV) were sequenced and manually annotated. These genomes were compared with those of three previously sequenced R. solanacearum strains: GMI1000 (tomato, phy. I), IPO1609 (potato, phy. IIB), and Molk2 (banana, phy. IIB). The major genomic features (size, G+C content, number of genes) were conserved across all of the six sequenced strains. Despite relatively high genetic distances (calculated from average nucleotide identity) and many genomic rearrangements, more than 60% of the genes of the megaplasmid and 70% of those on the chromosome are syntenic. The three new genomic sequences revealed the presence of several previously unknown traits, probably acquired by horizontal transfers, within the genomes of R. solanacearum, including a type IV secretion system, a rhi-type anti-mitotic toxin and two small plasmids. Genes involved in virulence appear to be evolving at a faster rate than the genome as a whole.
Conclusions: Comparative analysis of genome sequences and gene content confirmed the differentiation of R. solanacearum species complex strains into four phylotypes. Genetic distances between strains, in conjunction with CGH analysis of a larger set of strains, revealed differences great enough to consider reclassification of the R. solanacearum species complex into three species. The data are still too fragmentary to link genomic classification and phenotypes, but these new genome sequences identify a pan-genome more representative of the diversity in the R. solanancearum species complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900269 | PMC |
http://dx.doi.org/10.1186/1471-2164-11-379 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany.
Dynamically interconvertible metallo-supramolecular multicomponent assemblies, coexisting orthogonally in solution, serve as simplified mimics for complex networks found in biological systems. Building on recent advances in controlling the nonstatistical self-assembly of heteroleptic coordination cages and heteromeric completive self-sorting, i.e.
View Article and Find Full Text PDFJ Evol Biol
January 2025
Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals de la Universitat de Barcelona (BEECA), Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona.
Differences in habitat use impose ecological constraints which in turn lead to functional and morphological differences through adaptation. In fact, a convergent evolutionary pattern is evident when species exhibit similar responses to similar environments. In this study we examine how habitat use influences the evolution of body shape in lizards from the family Lacertidae.
View Article and Find Full Text PDFInsect Sci
January 2025
College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong Province, China.
Wings are important organs of insects involved in flight, mating, and other behaviors, and are therefore prime targets for pest control. The formation of insect wings is a complex process that is regulated by multiple pathways. The Hedgehog (Hh) pathway regulates the distribution of wing veins, while the Hippo pathway modulates wing size.
View Article and Find Full Text PDFExperiments have shown that predation-risk effects on prey fitness can be highly contingent on environmental conditions, suggesting a potential difficulty in generalizing risk effects on prey abundance in natural settings. Rather than study the influence of a particular controlled factor, we examine the problem with a novel approach. We examined the influence of risk effects in multiple experiments performed under similar study conditions.
View Article and Find Full Text PDFPeerJ
January 2025
Marine Biology Unit, Department of Biology, Ghent University, Ghent, Belgium.
Animals can use specific environmental cues to make informed decisions about whether and where to disperse. Patch conditions are known to affect the dispersal behavior of animals, but empirical studies investigating the impact of resource diversity on the dispersal of closely related species are largely lacking. In this study, we investigated how food diversity affects the dispersal behavior of three co-occurring cryptic species of the marine bacterivorous nematode complex (Pm I, Pm III and Pm IV).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!