A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Catalytic properties of two Rhizopus oryzae 99-880 glucoamylase enzymes without starch binding domains expressed in Pichia pastoris. | LitMetric

Catalytic properties of two Rhizopus oryzae 99-880 glucoamylase enzymes without starch binding domains expressed in Pichia pastoris.

Appl Biochem Biotechnol

Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA Agricultural Research Service, 1815 N. University St., Peoria, IL 61604, USA.

Published: December 2010

Catalytic properties of two glucoamylases, AmyC and AmyD, without starch binding domains from Rhizopus oryzae strain 99-880 are determined using heterologously expressed enzyme purified to homogeneity. AmyC and AmyD demonstrate pH optima of 5.5 and 6.0, respectively, nearly one unit higher than the Rhizopus AmyA glucoamylase enzyme. Optimal initial activities are at 60 and 50 °C for AmyC and AmyD, respectively. Inactivation of both enzymes occurs at 50 °C following 30 min pre-incubation. The two enzymes demonstrate substantially slower catalytic rates toward soluble starch relative to AmyA. AmyC has similar k(cat) and K(m) for oligosaccharides to other Rhizopus and Aspergillus glucoamylases; however, the enzyme has a 2-fold lower K(m) (maltose) . AmyD has a 3-fold higher K(m) and lower k(cat) for maltooligosaccharides than AmyC and other glucoamylases. AmyC (but not AmyD) exhibits substrate inhibition. K(i) for substrate inhibition decreases with increasing length of the oligosaccharides. Data from pre-steady-state binding of AmyC to maltose and maltotriose and pre-steady-state to steady-state catalytic turnover experiments of AmyC acting on maltotriose were used to interrogate models of substrate inhibition. In the preferred model, AmyC accumulates an enzyme-maltose-maltotriose dead-end complex in the steady state.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-010-8994-0DOI Listing

Publication Analysis

Top Keywords

amyc amyd
16
substrate inhibition
12
amyc
9
catalytic properties
8
rhizopus oryzae
8
starch binding
8
binding domains
8
glucoamylases amyc
8
amyd
5
catalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!