Dexterous miniature robot for advanced minimally invasive surgery.

Surg Endosc

University of Nebraska-Lincoln, N104 Walter Scott Engineering Center, P.O. Box 880656, Lincoln, NE 68588-0656, USA.

Published: January 2011

This study demonstrates the feasibility of using a miniature robot to perform complex, single-incision, minimal access surgery. Instrument positioning and lack of triangulation complicate single-incision laparoscopic surgery, and open surgical procedures are highly invasive. Using minimally invasive techniques with miniature robotic platforms potentially offers significant clinical benefits. A miniature robot platform has been designed to perform advanced laparoscopic surgery with speed, dexterity, and tissue-handling capabilities comparable to standard laparoscopic instruments working through trocars. The robotic platform includes a dexterous in vivo robot and a remote surgeon interface console. For this study, a standard laparoscope was mounted to the robot to provide vision and lighting capabilities. In addition, multiple robots could be inserted through a single incision rather than the traditional use of four or five different ports. These additional robots could provide capabilities such as tissue retraction and supplementary visualization or lighting. The efficacy of this robot has been demonstrated in a nonsurvival cholecystectomy in a porcine model. The procedure was performed through a single large transabdominal incision, with supplementary retraction being provided by standard laparoscopic tools. This study demonstrates the feasibility of using a dexterous robot platform for performing single-incision, advanced laparoscopic surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00464-010-1143-6DOI Listing

Publication Analysis

Top Keywords

miniature robot
12
laparoscopic surgery
12
minimally invasive
8
study demonstrates
8
demonstrates feasibility
8
robot platform
8
advanced laparoscopic
8
standard laparoscopic
8
robot
7
surgery
5

Similar Publications

Development of a single port dual arm robotically steerable endoscope for neurosurgical applications.

Npj Robot

January 2025

Medical Robotics and Automation (RoboMed) Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.

Single-port surgical robots have gained popularity due to less patient trauma and quicker post-surgery recovery. However, due to limited access provided by a single incision, the miniaturization and maneuverability of these robots still needs to be improved. In this paper, we propose the design of a single-port, dual-arm robotically steerable endoscope containing one steerable major cannula and two steerable minor cannulas.

View Article and Find Full Text PDF

Bio-inspired carbon-based artificial muscle with precise and continuous morphing capabilities.

Natl Sci Rev

January 2025

CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.

View Article and Find Full Text PDF

Swarm navigation of cyborg-insects in unknown obstructed soft terrain.

Nat Commun

January 2025

Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, 5650871, Osaka, Japan.

Cyborg insects refer to hybrid robots that integrate living insects with miniature electronic controllers to enable robotic-like programmable control. These creatures exhibit advantages over conventional robots in adaption to complex terrain and sustained energy efficiency. Nevertheless, there is a lack of literature on the control of multi-cyborg systems.

View Article and Find Full Text PDF

Boosting the Actuation Performance of a Dynamic Supramolecular Polyurethane-Urea Elastomer via Kinetic Control.

ACS Appl Mater Interfaces

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.

The ongoing soft actuation has accentuated the demand for dielectric elastomers (DEs) capable of large deformation to replace the traditional rigid mechanical apparatus. However, the low actuation strain of DEs considerably limits their practical applications. This work developed high-performance polyurethane-urea (PUU) elastomers featuring large actuation strains utilizing an approach of kinetic control over the microphase separation structure during the fabrication process.

View Article and Find Full Text PDF

Nanotechnology and nanobots unleashed: pioneering a new era in gynecological cancer management - a comprehensive review.

Cancer Chemother Pharmacol

January 2025

Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India.

Introduction: Gynecological cancers, such as ovarian, cervical, and endometrial malignancies, are notoriously challenging due to their intricate biology and the critical need for precise diagnostic and therapeutic approaches. In recent years, groundbreaking advances in nanotechnology and nanobots have emerged as game-changers in this arena, offering the promise of a new paradigm in cancer management. This comprehensive review delves into the revolutionary potential of these technologies, showcasing their ability to transform the landscape of gynecological oncology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!