Objective: Learning and memory impairments are prevalent among persons with multiple sclerosis (MS); however, such deficits are only weakly associated with MS disease severity (brain atrophy). The cognitive reserve hypothesis states that greater lifetime intellectual enrichment lessens the negative impact of brain disease on cognition, thereby helping to explain the incomplete relationship between brain disease and cognitive status in neurologic populations. The literature on cognitive reserve has focused mainly on Alzheimer disease. The current research examines whether greater intellectual enrichment lessens the negative effect of brain atrophy on learning and memory in patients with MS.

Methods: Forty-four persons with MS completed neuropsychological measures of verbal learning and memory, and a vocabulary-based estimate of lifetime intellectual enrichment. Brain atrophy was estimated with third ventricle width measured from 3-T magnetization-prepared rapid gradient echo MRIs. Hierarchical regression was used to predict learning and memory with brain atrophy, intellectual enrichment, and the interaction between brain atrophy and intellectual enrichment.

Results: Brain atrophy predicted worse learning and memory, and intellectual enrichment predicted better learning; however, these effects were moderated by interactions between brain atrophy and intellectual enrichment. Specifically, higher intellectual enrichment lessened the negative impact of brain atrophy on both learning and memory.

Conclusion: These findings help to explain the incomplete relationship between multiple sclerosis disease severity and cognition, as the effect of disease on cognition is attenuated among patients with higher intellectual enrichment. As such, intellectual enrichment is supported as a protective factor against disease-related cognitive impairment in persons with multiple sclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905894PMC
http://dx.doi.org/10.1212/WNL.0b013e3181e396beDOI Listing

Publication Analysis

Top Keywords

intellectual enrichment
40
brain atrophy
36
learning memory
24
multiple sclerosis
16
enrichment lessens
12
atrophy learning
12
atrophy intellectual
12
intellectual
11
brain
11
atrophy
9

Similar Publications

Myeloid cells meet CD8 T cell exhaustion in cancer: What, why and how.

Chin J Cancer Res

December 2024

School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China.

Exhausted T cell (Tex) is a specific state of T cell dysfunction, in which these T cells gradually lose their effector function and change their phenotype during chronic antigen stimulation. The enrichment of exhausted CD8 T cell (CD8 Tex) in the tumor microenvironment is one of the important reasons leading to the poor efficacy of immunotherapy. Recent studies have reported many reasons leading to the CD8 T cell exhaustion.

View Article and Find Full Text PDF

Prader-Willi syndrome (PWS) is a rare genetic disease that causes developmental delays, intellectual impairment, constant hunger, obesity, endocrine dysfunction, and various behavioral and neuropsychiatric abnormalities. Standard care of PWS is limited to strict supervision of food intake and growth hormone therapy, highlighting the unmet need for new therapeutic strategies. Environmental enrichment (EE), a housing environment providing physical, social, and cognitive stimulations, exerts broad benefits on mental and physical health.

View Article and Find Full Text PDF

Objective: Prolonged mechanical ventilation after cardiac surgery significantly increases morbidity and mortality. The aim of this study is to establish the role of diaphragmatic pacing to decrease mechanical ventilation burden in high-risk patients undergoing cardiac surgery.

Methods: This is a prospective, randomized trial of temporary diaphragmatic pacing electrode use in patients undergoing cardiac surgery (NCT04899856).

View Article and Find Full Text PDF

[Clinical and genetic analysis of a child with Lamb-Shaffer syndrome due to a de novo variant of SOX5 gene].

Zhonghua Yi Xue Yi Chuan Xue Za Zhi

January 2025

Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou, Henan 450018, China.

Objective: To explore the clinical features of a child with Lamb-Shaffer syndrome (LAMSHF) due to a variant of SOX5 gene.

Methods: A child who was admitted to Children's Hospital Affiliated to Zhengzhou University in July 2022 was selected as the study subject. Clinical data of the child was collected.

View Article and Find Full Text PDF

Maternal stress during pregnancy, or prenatal stress, is a risk factor for neurodevelopmental disorders in offspring, including autism spectrum disorder (ASD). In ASD, dorsal striatum displays abnormalities correlating with symptom severity, but there is a gap in knowledge about dorsal striatal cellular and molecular mechanisms that may contribute. Using a mouse model, we investigated how prenatal stress impacted striatal-dependent behavior in adult offspring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!