Renal ischemia reperfusion injury (IRI) occurs after reduced renal blood flow and is a major cause of acute injury in both native and transplanted kidneys. Studies have shown diverse cell types in both the innate and the adaptive immune systems participate in kidney IRI as dendritic cells, macrophages, neutrophils, B cells, CD4(+) NK(+) cells, and CD4(+) T cells all contribute to this form of injury. Recently, we have found that NK cells induce apoptosis in tubular epithelial cells (TECs) and also contribute to renal IRI. However, the mechanism of NK cell migration and activation during kidney IRI remains unknown. In this study, we have identified that kidney TECs express a high level of osteopontin (OPN) in vitro and in vivo. C57BL/6 OPN-deficient mice have reduced NK cell infiltration with less tissue damage compared with wild-type C57BL/6 mice after ischemia. OPN can directly activate NK cells to mediate TEC apoptotic death and can also regulate chemotaxis of NK cells to TECs. Taken together, our study's results indicate that OPN expression by TECs is an important factor in initial inflammatory responses that involves NK cells activity in kidney IRI. Inhibiting OPN expression at an early stage of IRI may be protective and preserve kidney function after transplantation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.0903245 | DOI Listing |
Arch Biochem Biophys
January 2025
Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China. Electronic address:
Background: Ischemia-reperfusion injury (IRI) often results in renal impairment. While the presence of neutrophil extracellular traps (NETs) is consistently observed, their specific impact on IRI is not yet defined. Sivelestat sodium, an inhibitor of neutrophil elastase which is crucial for NET formation, may offer a therapeutic approach to renal IRI, warranting further research.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.
The complement system plays a crucial role in regulating the inflammatory responses in kidney transplantation, potentially contributing to early decline in kidney function. Ischemia-reperfusion injury (IRI) is among the factors affecting graft outcomes and a primary contributor to delayed graft function. Complement activation, particularly the alternative pathway, participates in the pathogenesis of IRI, involving all kidney compartments.
View Article and Find Full Text PDFNephrology (Carlton)
February 2025
Department of Quality Management, Tianjin Blood Center, Tianjin, China.
Aim: To study the effect and elucidate the underlying mechanisms of VDAC1-ΔC on autophagy in renal tubular epithelial cells injured by hypoxia/reoxygenation.
Methods: C57/BL6 mice were randomly divided into groups: sham operation group, IRI 1d group and IRI 2d group. The inner canthal blood of mice was collected to detect the levels of serum creatinine and urea nitrogen and kidney tissues were sampled, and sections were stained with Periodic acid-Schiff for morphological evaluation.
Am J Transplant
January 2025
Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan. Electronic address:
Antibody-mediated rejection (ABMR) remains a leading cause of graft loss during kidney transplantation. Ischemia reperfusion injury (IRI) has been reported to promote T-cell proliferation, leading to B-cell activation and subsequent production of donor-specific antibodies (DSA), which target antigens on the vascular endothelium. We hypothesize that a novel therapeutic strategy targeting highly toxic reactive oxygen species could mitigate oxidative stress and immune responses associated with IRI.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Biological Sciences, KAIST Institute for the BioCentury, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
Renal ischemia/reperfusion injury (IRI) is a common form of acute kidney injury. The basic mechanism underlying renal IRI is acute inflammation, where oxidative stress plays an important role. Although bilirubin exhibits potent reactive oxygen species (ROS)-scavenging properties, its clinical application is hindered by problems associated with solubility, stability, and toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!