Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Existing evidence suggests that the Varkud satellite (VS) ribozyme accelerates the cleavage of a specific phosphodiester bond using general acid-base catalysis. The key functionalities are the nucleobases of adenine 756 in helix VI of the ribozyme, and guanine 638 in the substrate stem loop. This results in a bell-shaped dependence of reaction rate on pH, corresponding to groups with pK(a) = 5.2 and 8.4. However, it is not possible from those data to determine which nucleobase is the acid, and which the base. We have therefore made substrates in which the 5' oxygen of the scissile phosphate is replaced by sulfur. This labilizes the leaving group, removing the requirement for general acid catalysis. This substitution restores full activity to the highly impaired A756G ribozyme, consistent with general acid catalysis by A756 in the unmodified ribozyme. The pH dependence of the cleavage of the phosphorothiolate-modified substrates is consistent with general base catalysis by nucleobase at position 638. We conclude that cleavage of the substrate by the VS ribozyme is catalyzed by deprotonation of the 2'-O nucleophile by G638 and protonation of the 5'-O leaving group by A756.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900685 | PMC |
http://dx.doi.org/10.1073/pnas.1004255107 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!