Bacteroides is an abundant genus of bacteria of the human intestinal microbiota. Bacteroides species synthesize a large number of capsular polysaccharides (PS), a biological property not shared with closely related oral species, suggesting importance for intestinal survival. Bacteroides fragilis, for example, synthesizes eight capsular polysaccharides per strain, each of which phase varies via inversion of the promoters located upstream of seven of the eight polysaccharide biosynthesis operons. In a single cell, many of these polysaccharide loci promoters can be simultaneously oriented on for transcription of the downstream biosynthesis operons. Here, we demonstrate that despite the promoter orientations, concomitant transcription of multiple polysaccharide loci within a cell is inhibited. The proteins encoded by the second gene of each of these eight loci, collectively designated the UpxZ proteins, inhibit the synthesis of heterologous polysaccharides. These unique proteins interfere with the ability of UpxY proteins encoded by other polysaccharide loci to function in transcriptional antitermination of their respective operon. The eight UpxZs have different inhibitory spectra, thus establishing a hierarchical regulatory network for polysaccharide synthesis. Limitation of concurrent polysaccharide synthesis strongly suggests that these bacteria evolved this property as an evasion-type mechanism to avoid killing by polysaccharide-targeting factors in the ecosystem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900635PMC
http://dx.doi.org/10.1073/pnas.1005039107DOI Listing

Publication Analysis

Top Keywords

polysaccharide synthesis
12
polysaccharide loci
12
bacteroides fragilis
8
capsular polysaccharides
8
biosynthesis operons
8
proteins encoded
8
polysaccharide
7
trans locus
4
locus inhibitors
4
inhibitors limit
4

Similar Publications

N-Glycosylation modulators for targeted manipulation of glycosylation for monoclonal antibodies.

Appl Microbiol Biotechnol

January 2025

School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

Monoclonal antibodies are extensively used as biotherapeutics for treatment of a variety of diseases. Glycosylation of therapeutic antibodies is considered a critical quality attribute as it influences the effector function, circulatory half-life, immunogenicity, and eventually efficacy and patient safety. During upstream process development, media components play a significant role in determining the glycosylation profile.

View Article and Find Full Text PDF

A periplasmic protein modulates the proteolysis of peptidoglycan hydrolases to maintain cell wall homeostasis in .

Proc Natl Acad Sci U S A

January 2025

Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Bacterial cell wall assembly and remodeling require activities of peptidoglycan (PG) hydrolases as well as PG synthases. In particular, the activity of DD-endopeptidases, which cleave the 4-3 peptide crosslinks in PG, is essential for PG expansion in gram-negative bacteria. Maintaining optimal levels of DD-endopeptidases is critical for expanding PG without compromising its integrity.

View Article and Find Full Text PDF

Unlabelled: Fish gut microbial communities are important for the breakdown and energy harvesting of the host diet. Microbes within the fish gut are selected by environmental and evolutionary factors. To understand how fish gut microbial communities are shaped by diet, three tropical fish species (hawkfish, ; yellow tang, ; and triggerfish, ) were fed piscivorous (fish meal pellets), herbivorous (seaweed), and invertivorous (shrimp) diets, respectively.

View Article and Find Full Text PDF

Background: Dachaihu decoction (DCHD) is a common Chinese medicine formula against sepsis-induced acute lung injury (SALI). PANoptosis is a novel type of programmed cell death. Nevertheless, The mechanisms of DCHD against SALI via anti-PANoptosis remains unknown.

View Article and Find Full Text PDF

Avian coccidiosis, caused by the protozoan Eimeria, leads to significant economic losses for the poultry industry. In this study, bacteriophages that specifically bind to the calcium-binding protein (EtCab) of Eimeria tenella were selected using a biopanning process with a pIII phage display library. The recombinant EtCab protein served as the ligand in this selection process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!