Several MHC class II alleles linked with autoimmune diseases form unusually low-stability complexes with class II-associated invariant chain peptides (CLIP), leading us to hypothesize that this is an important feature contributing to autoimmune pathogenesis. We recently demonstrated a novel post-endoplasmic reticulum (ER) chaperoning role of the CLIP peptides for the murine class II allele I-E(d). In the current study, we tested the generality of this CLIP chaperone function using a series of invariant chain (Ii) mutants designed to have varying CLIP affinity for I-A(g7). In cells expressing these Ii CLIP mutants, I-A(g7) abundance, turnover and antigen presentation are all subject to regulation by CLIP affinity, similar to I-E(d). However, I-A(g7) undergoes much greater quantitative changes than observed for I-E(d). In addition, we find that Ii with a CLIP region optimized for I-A(g7) binding may be preferentially assembled with I-A(g7) even in the presence of higher levels of wild-type Ii. This finding indicates that, although other regions of Ii interact with class II, CLIP binding to the groove is likely to be a dominant event in assembly of nascent class II molecules with Ii in the ER.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908477 | PMC |
http://dx.doi.org/10.1093/intimm/dxq056 | DOI Listing |
Int J Behav Med
January 2025
Department of Clinical Psychological Science, Maastricht University, Maastricht, The Netherlands.
Background: Previous studies demonstrated that task-specific stress appraisals as well as the more general belief that stress is (mal)adaptive (i.e., stress mindset) can affect the stress response.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.
Many of the cells in mammalian tissues are in a reversible quiescent state; they are not dividing, but retain the ability to proliferate in response to extracellular signals. Quiescence relies on the activities of transcription factors (TFs) that orchestrate the repression of genes that promote proliferation and establish a quiescence-specific gene expression program. Here we discuss how the coordinated activities of TFs in different quiescent stem cells and differentiated cells maintain reversible cell cycle arrest and establish cell-protective signalling pathways.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
Currently, the direct endonasal approach is widely used in endoscopic endonasal surgery (EES) for pituitary neuroendocrine tumor. However, a large posterior septal perforation is inevitable. We routinely utilize a modified para/transseptal approach using the combination of a Killian and a contralateral rescue flap incision (PTSA with K-R incision).
View Article and Find Full Text PDFBackground: Primary progressive aphasia (PPA) is a language-based dementia linked with underlying Alzheimer's disease (AD) or frontotemporal dementia. Clinicians often report difficulty differentiating between the logopenic (lv) and nonfluent/agrammatic (nfv) subtypes, as both variants present with disruptions to "fluency" yet for different underlying reasons. In English, acoustic and linguistic markers from connected speech samples have shown promise in machine learning (ML)-based differentiation of nfv from lv.
View Article and Find Full Text PDFBackground: Primary progressive aphasia (PPA) is a language-led dementia associated with underlying Alzheimer's disease (AD) or frontotemporal lobar degeneration pathology. As part of the Alzheimer's spectrum, logopenic (lv) PPA may be particularly difficult to distinguish from amnestic AD, due to overlapping clinical features. Analysis of linguistic and acoustic variables derived from connected speech has shown promise as a diagnostic tool for differentiating dementia subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!