Cell micropatterning inside a microchannel and assays under a stable concentration gradient.

J Biosci Bioeng

Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan.

Published: August 2010

We describe the use of a microfluidic device to micropattern cells in a microchannel and investigated the behavior of these cells under a concentration gradient. The microfluidic device consisted of 3 parts: a branched channel for generating a stable concentration gradient, a main channel for culturing cells, and 2 side channels that flowed into the main channel. The main channel was coated with a cross-linked albumin that was initially cell-repellent but that could become cell-adherent by electrostatic adsorption of a polycation. A sheath flow stream, which was generated by introducing a polycation solution from the branched channel and a buffer solution from the 2 side channels, was used to change a specific region in the main channel from cell-repellent to cell-adhesive. In this way, cells attached to the central region along the main channel. The remaining surface was subsequently changed to cell-adhesive, thereby facilitating cell migration from a fixed location under a concentration gradient. We demonstrated that with this device, the gradient generator could be used to conduct simultaneous cytotoxic assays with anticancer agents; further, by combining this device with cell micropatterning, migration assays under a concentration gradient of biological factors could be conducted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2010.02.001DOI Listing

Publication Analysis

Top Keywords

concentration gradient
20
main channel
20
cell micropatterning
8
stable concentration
8
microfluidic device
8
branched channel
8
side channels
8
region main
8
channel
7
gradient
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!