Winterization of peanut biodiesel to improve the cold flow properties.

Bioresour Technol

Chemical Engineering Department, Institute of Chemical and Environmental Technologies, University of Castilla-La Mancha, Ciudad Real, Spain.

Published: October 2010

Biodiesel is susceptible to start-up and performance problems, consistent with its chemical composition, when vehicles and fuel systems are subjected to cold temperatures. In this work, a comprehensive evaluation of the crystallization behavior of different biodiesels was performed by measuring the cold filter plugging point (CFPP), cloud point (CP) and pour point (PP). Results were related to differential scanning calorimetry (DSC) thermograms. Peanut methyl esters in particular led to the most unfavorable properties due to the presence of long-chain saturated compounds (arachidic or C20:0, behenic or C22:0, and lignoceric or C24:0 acid methyl esters) approaching 6 wt.%. The cold flow properties may be improved with different winterization techniques to eliminate some of these compounds. In this work, various techniques are tested, and the best technique is found to be crystallization filtration using methanol, which reduces the CFPP from 17 degrees C to -8 degrees C with a biodiesel loss of 8.93 wt.%. Moreover, the cake from filtration, enriched with long-chain saturated methyl esters, can be used as phase change material (PCM) for thermo-regulated materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2010.04.063DOI Listing

Publication Analysis

Top Keywords

methyl esters
12
cold flow
8
flow properties
8
long-chain saturated
8
winterization peanut
4
peanut biodiesel
4
biodiesel improve
4
cold
4
improve cold
4
properties biodiesel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!