Objective: The mechanisms of keloid invasion are largely unknown. This study aims to analyze the differentially expressed genes between keloid peripheral and central areas and thus to define the molecule that might be responsible for keloid invasion.
Methods: The gene chip of transforming growth factor-β (TGF-β) superfamily signaling pathway was used to analyze differentially expressed genes of the fibroblasts derived from peripheral area and central area of 3 keloids. The differential expression of growth differentiation factor-9 (GDF-9) was also confirmed by quantitative PCR and Western-blot. Moreover, GDF-9 expression levels were compared among the fibroblasts derived from 3 keloids, hypertrophic scars and normal skin with quantitative PCR and immunofluorescent staining.
Results: GDF-9 expression level was significantly higher in the peripheral area than in the central area (p<0.05) and was significantly higher in keloid than in hypertrophic scar and normal skin (p<0.05).
Conclusion: Up-regulated GDF-9 expression in keloid peripheral area may play a role in keloid invasive behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.burns.2010.02.009 | DOI Listing |
Discov Oncol
January 2025
West China School of Medicine, Sichuan University, Chengdu, China.
Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Department of Agricultural Biotechnology, Faculty of Agriculture, Kırşehir Ahi Evran University, 40100, Kirsehir, Türkiye.
The present study was conducted on specific skeletal muscles of six weaned male kids from each of the Angora, Hair, Honamlı, and Kilis goat breeds. The relationships between the expression of myogenic factor 5 (Myf5) and myogenic factor 6 (Myf6) genes and muscle fibre characteristics were analysed. Muscle samples from the longissimus dorsi (LD) and semitendinosus (ST) were collected from six 90-day-old weaned male kids of each breed.
View Article and Find Full Text PDFTissue Eng Part C Methods
January 2025
CiRA Foundation, Research and Development Center, Osaka, Japan.
Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.
View Article and Find Full Text PDFThyroid
January 2025
Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Republic of Korea.
Although patients with anaplastic thyroid cancer (ATC) generally have a poor prognosis and there are currently no effective treatment options, survival and response to therapy vary between patients. Genomic and transcriptomic profiles of ATC have been reported; however, a comprehensive study of the tumor microenvironment (TME) of ATC is still lacking. This study aimed to elucidate the TME characteristics associated with ATC and their prognostic implications.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India.
Alba domain-containing proteins are ubiquitously found in archaea and eukaryotes. By binding to either DNA, RNA, or DNA:RNA hybrids, these proteins function in genome stabilization, chromatin organization, gene regulation, and/or translational modulation. In the malaria parasite , six Alba domain proteins PfAlba1-6 have been described, of which PfAlba1 has emerged as a "master regulator" of translation during parasite intra-erythrocytic development (IED).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!