Effect of fluoride and of calcium sodium phosphosilicate toothpastes on pre-softened dentin demineralization and remineralization in vitro.

J Dent

Department of Preventive and Community Dentistry, University of Athens, Dental School, 2 Thivon St. 115 27, Athens, Greece.

Published: August 2010

Objectives: The purpose of this in vitro study was to evaluate the effect of toothpastes containing sodium fluoride in different concentrations or a calcium sodium phosphosilicate system on pre-softened dentin demineralization and remineralization.

Methods: During a ten day pH-cycling protocol, pre-softened bovine root dentin slabs were immersed twice daily, after the demineralization periods, for 2min, in the following toothpaste slurries: (a) non-fluoridated (control), (b) 7.5% calcium sodium phosphosilicate, (c) 1450 ppm F, (d) 2800 ppm F and (e) 5000 ppm F. Subsequently, the specimens were subjected to a 15-h acid resistance test. Surface microhardness was assessed initially and during the pH-cycling and the acid resistance test period. Repeated measurements in each group were analyzed through appropriate regression models for longitudinal data.

Results: All fluoride groups, during pH cycling, showed significantly less microhardness loss (p < or = 0.010, p < or = 0.002, p < or = 0.002) and subsequently exhibited increased acid resistance (p < or = 0.010, p < or = 0.001, p < or = 0.001) compared to the control. The 5000 ppm and 2800 ppm F toothpastes, inhibited demineralization significantly more effectively than the 1450 ppm F (p < or = 0.001, p < or = 0.030) and the calcium sodium phosphosilicate toothpaste (p < or = 0.001), while no significant differences were found between the two high fluoride groups (p=0.130). The calcium sodium phosphosilicate toothpaste, during pH cycling showed a difference that approached statistical significance compared to control (p=0.079), but its acid resistance behavior was similar to control (p=0.610).

Conclusions: Under these experimental conditions, the high fluoride toothpastes promoted remineralization and inhibited demineralization more effectively, than the 1450 ppm F, the non-fluoridated (control) and the calcium sodium phosphosilicate toothpastes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdent.2010.05.010DOI Listing

Publication Analysis

Top Keywords

calcium sodium
24
sodium phosphosilicate
24
acid resistance
16
1450 ppm
12
phosphosilicate toothpastes
8
pre-softened dentin
8
dentin demineralization
8
non-fluoridated control
8
ppm 2800
8
2800 ppm
8

Similar Publications

One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.

View Article and Find Full Text PDF

Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC.

View Article and Find Full Text PDF

The objective of this study was to evaluate the changes in enzymic activity, metabolites, and hematological responses during the first 56-d of arrival of newly received calves, which were qualified at reception as high-risk but diagnosed as clinically healthy. A total of 320 blood samples were taken from 64 crossbred bull calves (average initial body weight = 148.3 ± 1.

View Article and Find Full Text PDF

Systemic Mechanisms of Ionic Regulation in Carcinogenesis.

Cancers (Basel)

January 2025

Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Cancer is a complex disease characterized by uncontrolled cell proliferation at various levels, leading to tumor growth and spread. This review focuses on the role of ion homeostasis in cancer progression. It describes a model of ion-mediated regulation in both normal and cancerous cell proliferation.

View Article and Find Full Text PDF

Objectives: The aim of this in-vitro study was to evaluate the effects of antacid gastric syrups on the surface roughness and microhardness of restorative dental materials.

Materials And Methods: Three different composite resins, nanohybrid, microhybrid and giomer, and four antacid gastric syrups were used in the study. A total of 150 samples were obtained by preparing 50 (10 mm x 2 mm) disk-shaped samples of each composite type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!