Monosialotetrahexosy-1 ganglioside (GM1) has been shown to reduce brain damage induced by cerebral ischemia. The objective of this study is to determine whether GM1 is able to ameliorate hyperglycemia-exacerbated ischemic brain damage in hyperglycemia-recruited areas such as the hippocampal CA3 sub regions and the cingulated cortex. Histologic stainings of Haematoxylin and Eosin, Nissl body, the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and phospho-ERK1/2 were performed on brain sections that have been subjected to 15 min of forebrain ischemia with reperfusion of 0, 1, 3, and 6h in normoglycemic, hyperglycemic and GM1-pretreated hyperglycemic groups. The results showed that GM1 ameliorated ischemic neuronal injuries in the CA3 area and cingulated cortex of the hyperglycemic animals after ischemia and reperfusion. Immunohistochemistry of phospho-ERK1/2 revealed that the neuroprotective effects of GM1 were associated with suppression of phospho-ERK1/2. The results suggest that GM1 attenuates diabetic-augmented ischemic neuronal injuries probably through suppression of ERK1/2 phosphorylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900456 | PMC |
http://dx.doi.org/10.1016/j.brainres.2010.05.044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!