From an azaindole lead, identified in high throughput screen, a series of potent bis-azaindole inhibitors of IGF1-R have been synthesized using rational drug design and SAR based on a in silico binding mode hypothesis. Although the resulting compounds produced the expected improved potency, the model was not validated by the co-crystallization experiments with IGF1-R.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1747-0285.2010.00991.xDOI Listing

Publication Analysis

Top Keywords

design potent
4
potent igf1-r
4
igf1-r inhibitors
4
inhibitors bis-azaindoles
4
bis-azaindoles azaindole
4
azaindole lead
4
lead identified
4
identified high
4
high throughput
4
throughput screen
4

Similar Publications

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a promising approach to identify new antimicrobial compounds in diverse microbial species. Here we developed an AI-based, explainable deep learning model, EvoGradient, that predicts the potency of antimicrobial peptides (AMPs) and virtually modifies peptide sequences to produce more potent AMPs, akin to in silico directed evolution. We applied this model to peptides encoded in low-abundance human oral bacteria, resulting in the virtual evolution of 32 peptides into potent AMPs.

View Article and Find Full Text PDF

Discovery of Selenium-Containing Derivatives as Potent and Orally Bioavailable GLP-1R Agonists.

J Med Chem

January 2025

Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.

Glucagon-like peptide-1 receptor (GLP-1R) is a well-established target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. The development of orally bioavailable and long-acting small-molecule GLP-1R agonists is a pursuit in both academia and industry. Herein, new selenium (Se)-containing compounds were designed using a Se-oxygen bioisostere strategy on the danuglipron scaffold.

View Article and Find Full Text PDF

Rapid luminescence-based screening method for SARS- CoV-2 inhibitors discovery.

SLAS Discov

January 2025

Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way. Nutley, New Jersey 07110, United States. Electronic address:

The COVID-19 pandemic has emphasized the necessity for rapid and adaptable drug screening platforms against live pathogenic viruses that require high levels of biosafety containment. Conventional antiviral testing is time-consuming and labor-intensive. Here, we outline the design and validation of a semi-automated drug-screening platform for SARS-CoV-2 that utilizes multiple liquid handlers, a stable A549 cell line expressing ACE2 and TMPRSS2 receptors, and a recombinant SARS-CoV-2 strain harboring the nano-luciferase gene.

View Article and Find Full Text PDF

Topical formulations containing 5-Fluorouracil (5-FU) have been proven effective in preventing the proliferation of skin cancer cells. However, their use is linked to side effects such as inflammatory and allergic reactions. Dexamethasone (Dexa) is a synthetic glucocorticoid used across allergic reactions which can be useful in preventing the 5-FU side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!