Drug resistance in Mycobacterium tuberculosis is a global problem, with major consequences for treatment and public health systems. As the emergence and spread of drug-resistant tuberculosis epidemics is largely influenced by the impact of the resistance mechanism on bacterial fitness, we wished to investigate whether compensatory evolution occurs in drug-resistant clinical isolates of M. tuberculosis. By combining information from molecular epidemiology studies of drug-resistant clinical M. tuberculosis isolates with genetic reconstructions and measurements of aminoglycoside susceptibility and fitness in Mycobacterium smegmatis, we have reconstructed a plausible pathway for how aminoglycoside resistance develops in clinical isolates of M. tuberculosis. Thus, we show by reconstruction experiments that base changes in the highly conserved A-site of 16S rRNA that: (i) cause aminoglycoside resistance, (ii) confer a high fitness cost and (iii) destabilize a stem-loop structure, are associated with a particular compensatory point mutation that restores rRNA secondary structure and bacterial fitness, while maintaining to a large extent the drug-resistant phenotype. The same types of resistance and associated mutations can be found in M. tuberculosis in clinical isolates, suggesting that compensatory evolution contributes to the spread of drug-resistant tuberculosis disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2010.07218.x | DOI Listing |
Sci Total Environ
January 2025
Department of Biotechnology, College of Applied Life Sciences, Inje University, 197 Inje-ro, Gimhae, Gyeongsangnam 50834, Republic of Korea.
Antibiotic resistance presents a burgeoning global health crisis, with over 70 % of pathogenic bacteria now exhibiting resistance to at least one antibiotic. This study leverages a vast dataset of 618,853 pathogenic bacterial genomes from the NCBI pathogen detection database, offering comprehensive insights into antibiotic resistance patterns, species-specific profiles, and transmission dynamics of resistant pathogens. We centered our investigation on the beta-lactam resistance gene blaTEM-1, found in 43,339 genomes, revealing its extensive distribution across diverse species and isolation sources.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116029, China.
Temperate estuary wetlands act as natural filters for microbiological contamination and have a profound impact on "One Health." However, knowledge of microbiological ecology security across the different habitats in temperate estuarine wetlands remains limited. This study employed meta-analysis to explore the characteristics of bacterial communities, potential pathogens, and antibiotic resistance genes (ARGs) across three heterogeneous habitats (water, soil, and sediment) within the Liaohe Estuary landscape.
View Article and Find Full Text PDFInfect Agent Cancer
January 2025
Genetics and Cytology Department, National Research Centre, Dokki, 12622, Giza, Egypt.
Background: Cancer is a significant global health issue due to its high incidence and mortality rates. In recent years, the relationship between the human microbiota and cancer has garnered attention across various medical fields. This includes research into the microbial communities that influence cancer development, tumor-associated microorganisms, and the interactions between the microbiome and tumor, collectively referred to as the oncobiome.
View Article and Find Full Text PDFBackground: The transmission of Salmonella spp. to human through the consumption of contaminated food products of animal origin, mainly poultry is a significant global public health concern. The emerging multidrug resistant (MDR) clones of non-typhoidal Salmonella (NTS) serovars, have spread rapidly worldwide both in humans and in the food chain.
View Article and Find Full Text PDFIUBMB Life
January 2025
The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China.
NKTCL is a highly aggressive malignant tumor, especially prevalent in the southern regions of China. Although chemotherapy regimens based on ADM have achieved certain therapeutic effects in early treatment, the issue of ADM resistance severely limits the therapeutic efficacy and makes it difficult to improve patient survival rates. Our research results indicate that the expression level of APOC1 is closely related to the sensitivity of NKTCL cells to ADM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!