Functions of alternative replication protein A in initiation and elongation.

Biochemistry

Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.

Published: July 2010

Replication protein A (RPA) is a single-stranded DNA-binding complex that is essential for DNA replication, repair, and recombination in eukaryotic cells. In addition to this canonical complex, we have recently characterized an alternative replication protein A complex (aRPA) that is unique to primates. aRPA is composed of three subunits: RPA1 and RPA3, also present in canonical RPA, and a primate-specific subunit RPA4, homologous to canonical RPA2. aRPA has biochemical properties similar to those of the canonical RPA complex but does not support DNA replication. We describe studies that aimed to identify what properties of aRPA prevent it from functioning in DNA replication. We show aRPA has weakened interaction with DNA polymerase alpha (pol alpha) and that aRPA is not able to efficiently stimulate DNA synthesis by pol alpha on aRPA-coated DNA. Additionally, we show that aRPA is unable to support de novo priming by pol alpha. Because pol alpha activity is essential for both initiation and Okazaki strand synthesis, we conclude that the inability of aRPA to support pol alpha loading causes aRPA to be defective in DNA replication. We also show that aRPA stimulates synthesis by DNA polymerase alpha in the presence of PCNA and RFC. This indicates that aRPA can support extension of DNA strands by DNA polymerase partial differential. This finding along with the previous observation that aRPA supports early steps of nucleotide excision repair and recombination indicates that aRPA can support DNA repair synthesis that requires polymerase delta, PCNA, and RFC and support a role for aRPA in DNA repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912413PMC
http://dx.doi.org/10.1021/bi100380nDOI Listing

Publication Analysis

Top Keywords

pol alpha
20
dna replication
16
arpa
14
replication protein
12
dna
12
dna polymerase
12
arpa support
12
alternative replication
8
repair recombination
8
canonical rpa
8

Similar Publications

The patient activation measure (PAM), a recognized measure of how active patients are in their care, is one of the most extensively used, widely translated, and tested instruments worldwide in measuring patient activation. This study aimed to assess the psychometric properties and construct validity of the Italian version of the 13-item Patient Activation Measure (PAM13-I) among patients undergoing elective laparoscopic cholecystectomy. A multicenter study was conducted across 111 surgical units in Italy.

View Article and Find Full Text PDF

Herpesviruses rely on host RNA polymerae II (RNA Pol II) for their mRNA transcription, yet the mechanisms of which has been poorly defined, while certain herpesviruses can enhance viral gene transcription by altering the RNA Pol II location, modulating its phosphorylation, or directly interacting with RNA Pol II. However, the influence of herpesviruses on RNA Pol II transcription extends beyond these direct effects. Here, we present a novel mechanism by which the host cell cycle regulates viral gene transcription via RNA Pol II during infection by Anatid Herpesvirus 1 (AnHV-1), an avian alpha-herpesvirus.

View Article and Find Full Text PDF

Fat mass and obesity-associated protein (FTO) was the earliest discovered m6A RNA demethylase. Previous studies have indicated that m6A modifications significantly influence the development, progression, and prognosis of various cancers. This study aimed to explore the role of FTO overexpression in colorectal cancer development, as well as its biological functions.

View Article and Find Full Text PDF

High-risk human papillomavirus E6 oncoprotein is a model system for the recognition and degradation of cellular p53 tumor suppressor protein. There remains a gap in the understanding of the ubiquitin transfer reaction, including placement of the E6AP catalytic HECT domain of the ligase concerning the p53 substrate and how E6 itself is protected from ubiquitination. We determined the cryoelectron microscopy (cryo-EM) structure of the E6AP/E6/p53 complex, related the structure to in vivo modeling of the tri-molecular complex, and identified structural interactions associated with activation of the ubiquitin ligase function.

View Article and Find Full Text PDF

Coupling interactions between the alpha (α) subunit of the polymerase III core (α-Pol III core) and the tau (τ) subunit of the clamp loader complex (τ-CLC) are vital for efficient and rapid DNA replication in Escherichia coli (E. coli). Specific and targeted mutations in the C-terminal τ-interaction region of the Pol III α-subunit disrupted efficient coupled rolling circle DNA synthesis in vitro and caused significant genomic defects in CRISPR-Cas9 dnaE edited cell strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!