AI Article Synopsis

Article Abstract

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive degeneration of nigrostriatal dopaminergic (DA) neurons. The therapeutic potential of glial cell line-derived neurotrophic factor (GDNF), the most potent neurotrophic factor for DA neurons, has been demonstrated in many experimental models of PD. However, chronic delivery of GDNF to DA neurons in the brain remains an unmet challenge. Here, we report the effects of GDNF-releasing Notch-induced human bone marrow-derived mesenchymal stem cells (MSC) grafted into striatum of the 6-hydroxydopamine (6-OHDA) progressively lesioned rat model of PD. Human MSC, obtained from bone marrow aspirates of young, healthy adult volunteers, were transiently transfected with the intracellular domain of the Notch1 gene (NICD) to generate SB623 cells. SB623 cells expressing GDNF and/or humanized Renilla green fluorescent protein (hrGFP) following lentiviral transduction or nontransduced cells were stereotaxically placed into rat striatum 1 week after a unilateral partial 6-OHDA striatal lesion. At 4 weeks, rats that had received GDNF-transduced SB623 cells had significantly decreased amphetamine-induced rotation compared with control rats, although this effect was not observed in rats that received GFP-transduced or nontransduced SB623 cells. At 5 weeks, rejuvenated tyrosine hydroxylase-immunoreactive (TH-IR) fibers that appeared to be host DA axons were observed in and around grafts. This effect was more prominent in rats that received GDNF-secreting cells and was not observed in controls. These observations suggest that human bone-marrow derived MSC, genetically modified to secrete GDNF, hold potential as an allogeneic or autologous stem cell therapy for PD.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.22435DOI Listing

Publication Analysis

Top Keywords

sb623 cells
16
rats received
12
glial cell
8
cell line-derived
8
line-derived neurotrophic
8
genetically modified
8
human bone
8
bone marrow-derived
8
marrow-derived mesenchymal
8
mesenchymal stem
8

Similar Publications

Ischemic stroke results in significant long-term disability and mortality worldwide. Although existing therapies, such as recombinant tissue plasminogen activator and mechanical thrombectomy, have shown promise, their application is limited by stringent conditions. Mesenchymal stem cell (MSC) transplantation, especially using SB623 cells (modified human bone marrow-derived MSCs), has emerged as a promising alternative, promoting neurogenesis and recovery.

View Article and Find Full Text PDF

Modified human mesenchymal stromal/stem cells restore cortical excitability after focal ischemic stroke in rats.

Mol Ther

January 2025

Gladstone Institute of Neurological Disease, San Francisco, CA, USA; University of California, San Francisco, Department of Neurology, and the Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA; University of California, San Francisco, Neurosciences Graduate Program, San Francisco, CA, USA. Electronic address:

Allogeneic modified bone marrow-derived human mesenchymal stromal/stem cells (hMSC-SB623 cells) are in clinical development for the treatment of chronic motor deficits after traumatic brain injury and cerebral ischemic stroke. However, their exact mechanisms of action remain unclear. Here, we investigated the effects of this cell therapy on cortical network excitability, brain tissue, and peripheral blood at a chronic stage after ischemic stroke in a rat model.

View Article and Find Full Text PDF

Mesenchymal Stromal Cell Implants for Chronic Motor Deficits After Traumatic Brain Injury: Post Hoc Analysis of a Randomized Trial.

Neurology

October 2024

From the Department of Neurological Surgery (D.O.O.), University of Pittsburgh Medical Center, PA; New England Institute for Neurology and Headache (P.M.), Stamford, CT; Department of Neurosurgery (A.S.A.), Loma Linda University Medical Center, CA; Department of Neurosurgery (Y.K.), The University of Tokyo Hospital, Japan; Department of Neurosurgery (M.K.), Hokkaido University Hospital, Sapporo, Japan; Department of Neurology (S.C.C.), University of California, Los Angeles; Westview Clinical Research (A.L.), Placentia, CA; Department of Translational Neurosciences (S.K.), Providence Saint John's Health Center, Santa Monica, CA; The Neurology Center of Southern California (B.M.F.), Carlsbad, CA; Department of Neurology (L.I.G.), University of California, Irvine; UCSF Weill Institute for Neurosciences (A.S.K.), Department of Neurology, University of California, San Francisco; Department of Neurology and Neurological Sciences (N.E.S.), and Stanford Stroke Center, Stanford University School of Medicine and Stanford Health Care, CA; Department of Neurological Surgery (J.W.C.), University of California, Irvine; JCHO Tokyo Shinjuku Medical Center (H.I.), Japan; Department of Neurological Surgery (T.Y.), Okayama University Graduate School of Medicine, Japan; SanBio, Inc. (D.C., B.N., D.B.), Mountain View, CA; Watson & Stonehouse Enterprises LLC (A.H.S.), Pacific Grove, CA; Massachusetts General Hospital and Harvard Medical School (R.M.R.), Boston; Department of Neurosurgery and Stanford Stroke Center (G.K.S.), Stanford University School of Medicine and Stanford Health Care, CA; Biostatistical Consulting Inc. (E.C.P.), Mountain View, CA; and Neurotrauma Rehabilitation Associates LLC (A.H.W.), Littleton, CO.

Background And Objectives: Traumatic brain injury (TBI) is frequently characterized by chronic motor deficits. Therefore, this clinical trial assessed whether intracranial implantation of allogeneic modified mesenchymal stromal (SB623) cells can improve chronic motor deficits after TBI.

Methods: Post hoc analysis of the double-blind, randomized, prospective, surgical sham-controlled, phase 2, STEMTRA clinical trial (June 2016 and March 2019) with 48 weeks of follow-up was conducted.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) hold therapeutic potential for neurological disorders, but their impact on neuronal activity remains unclear. We investigated the effects of SB623 cells (Notch-1 intracellular domain-transfected MSCs) and parental MSCs on human induced pluripotent stem cell (iPSC)-derived neurons using multi-electrode arrays. SB623 cells significantly increased neuronal activity and oscillation in a dose-dependent manner, surpassing astrocytes in promoting network bursts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!