Beta(2)-microglobulin (beta(2)-m) is a protein responsible for a severe complication of long-term hemodialysis, known as dialysis-related amyloidosis, in which initial beta(2)-m misfolding leads to amyloid fibril deposition, mainly in the skeletal tissue. Whereas much attention is paid to understanding the complex mechanism of amyloid formation, the evaluation of small molecules that may bind beta(2)-m and possibly inhibit the aggregation process is still largely unexplored mainly because the protein lacks a specific active site. Based on our previous findings, we selected a pilot set of sulfonated molecules that are known to either bind or not to the protein, including binders that are anti-amyloidogenic. We show how a complementary approach, using high-resolution mass spectrometry and in silico studies, can offer rapid and precise information on affinity, as well as insight into the structural requisites that favour or disfavour the inhibitory activity. Overall, this approach can be used for predictive purposes and for a rapid screening of fibrillogenesis inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.201000082DOI Listing

Publication Analysis

Top Keywords

high-resolution mass
8
molecules bind
8
combined high-resolution
4
mass spectrometric
4
spectrometric silico
4
silico approach
4
approach characterisation
4
characterisation small
4
small ligands
4
ligands beta2-microglobulin
4

Similar Publications

Future long duration space missions will expose astronauts to higher doses of galactic cosmic radiation (GCR) than those experienced on the international space station. Recent studies have demonstrated astronauts may be at risk for cardiovascular complications due to increased radiation exposure and fluid shift from microgravity. However, there is a lack of direct evidence on how the cardiovascular system is affected by GCR and microgravity since no astronauts have been exposed to exploratory mission relevant GCR doses.

View Article and Find Full Text PDF

Hydrophilic interaction chromatography coupled to high resolution mass spectrometry (HILIC-LC-HRMS): An approach to study natural peptides in Viperidae snake venom.

J Chromatogr A

January 2025

Laboratório Bioquímica e Biofísica, Instituto Butantan, São Paulo, Av. Vital Brasil 1500, São Paulo, SP 05503-900, Brazil. Electronic address:

Although proteins in snake venoms have been extensively studied and characterized, low-mass molecules remain relatively unexplored, mainly due to their low abundance, secondary role in envenomation, and some analytical technique limitations. However, these small molecules can provide new important data related to venom toxins' molecular structure, functions, and evolutionary relationships. This research aimed to characterize molecules below 10 kDa in the venoms of snakes from the Viperidae families (Bothrops, Agkistrodon, and Bitis) and compare two chromatographic approaches: reverse-phase chromatography (RP), a classic technique, and hydrophilic interaction liquid chromatography (HILIC), an alternative technique, both coupled with high-resolution mass spectrometry (HRMS).

View Article and Find Full Text PDF

Structural features of dioxane lignin: A comparative study with milled wood and formaldehyde-stabilized lignins.

Int J Biol Macromol

January 2025

Core Facility Center "Arktika", Northern (Arctic) Federal University named after M.V. Lomonosov, Northern Dvina Emb., 17, Arkhangelsk 163002, Russian Federation. Electronic address:

Dioxane lignin (DL) is isolated from plant material under mild acidolysis conditions and is widely used in many studies as a representative sample of protolignin, an alternative to milled wood lignin (MWL). However, the structural changes caused by hydrolytic degradation reactions during DL extraction are still poorly understood. In this work, an integrated approach based on 2D NMR and high-resolution mass spectrometry was used to establish the features of the lignin structure on the example of pine lignin isolated using dioxane under various conditions: MWL, DL and "formaldehyde stabilized" lignin (LSF).

View Article and Find Full Text PDF

As the volume of plastic waste from electrical and electronic equipment (WEEE) continues to rise, a significant portion is disposed of in the environment, with only a small fraction being recycled. Both disposal and recycling pose unknown health risks that require immediate attention. Existing knowledge of WEEE plastic toxicity is limited and mostly relies on epidemiological data and association studies, with few insights into the underlying toxicity mechanisms.

View Article and Find Full Text PDF

Ligand interaction landscape of transcription factors and essential enzymes in E. coli.

Cell

January 2025

Program in Bioinformatics, Boston University, Boston, MA 02215, USA; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Center for Network Systems Biology, Boston University, Boston, MA 02218, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA; Department of Chemical Physiology and Biochemistry, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. Electronic address:

Knowledge of protein-metabolite interactions can enhance mechanistic understanding and chemical probing of biochemical processes, but the discovery of endogenous ligands remains challenging. Here, we combined rapid affinity purification with precision mass spectrometry and high-resolution molecular docking to precisely map the physical associations of 296 chemically diverse small-molecule metabolite ligands with 69 distinct essential enzymes and 45 transcription factors in the gram-negative bacterium Escherichia coli. We then conducted systematic metabolic pathway integration, pan-microbial evolutionary projections, and independent in-depth biophysical characterization experiments to define the functional significance of ligand interfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!