Several studies have shown that aging is associated with quantitative and qualitative alterations of the stem and progenitor cell compartment. The current results indicate that there is a significant age-associated decline in the proliferative capacity of rat myeloid progenitor cells. In contrast, no difference was found in the frequency of myeloid progenitor cells in the bone marrow of young versus old rats. Furthermore, a significant shift towards higher proliferative capacity of myeloid progenitors was observed after lifelong voluntary exercise. These data emphasize that aging is accompanied by a loss of proliferative capacity and that voluntary exercise could retard this process.

Download full-text PDF

Source
http://dx.doi.org/10.1080/0361073X.2010.484785DOI Listing

Publication Analysis

Top Keywords

proliferative capacity
12
progenitor cell
8
myeloid progenitor
8
progenitor cells
8
voluntary exercise
8
decline bone
4
bone marrow-derived
4
marrow-derived hematopoietic
4
progenitor
4
hematopoietic progenitor
4

Similar Publications

Xeroderma pigmentosum group C (XPC) is a versatile protein crucial for sensing DNA damage in the global genome nucleotide excision repair (GG-NER) pathway. This pathway is vital for mammalian cells, acting as their essential approach for repairing DNA lesions stemming from interactions with environmental factors, such as exposure to ultraviolet (UV) radiation from the sun. Loss-of-function mutations in the XPC gene confer a photosensitive phenotype in XP-C patients, resulting in the accumulation of unrepaired UV-induced DNA damage.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) has been a clinical challenge due to its high recurrence and metastasis rates. Chemotherapy remains the primary treatment for TNBC after surgery ablation, but it lacks targeted specificity and causes side effects in normal tissues. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is significantly expressed in TNBC cells, and small interference RNA (siRNA) targeting ROR1 can effectively suppress ROR1 gene expression, thereby inhibiting proliferation and metastasis.

View Article and Find Full Text PDF

Singlet Oxygen-Induced Mitochondrial Reset in Cancer: A Novel Approach for Ovarian Cancer Therapy.

Metabolites

November 2024

Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC H3C 3A7, Canada.

: This study explores the generation of singlet oxygen (SO) through methylene blue (MB) activation as a metabolic intervention for ovarian cancer. We aimed to examine the role of SO in modulating mitochondrial function, cellular metabolism, and proliferation in ovarian cancer cell lines compared to control cells. : The study utilized two ovarian cancer cell lines, OV1369-R2 and TOV1369, along with ARPE-19 control cells.

View Article and Find Full Text PDF

Adequate hypothermic storage of human mesenchymal stem cells (hMSCs) is of fundamental importance since they have been explored in several regenerative medicine initiatives. However, the actual clinical application of hMSCs necessitates hypothermic storage for long periods, a process that requires the use of non-toxic and efficient cryo-reagents capable of maintaining high viability and differentiating properties after thawing. Current cryopreservation methods are based on cryoprotectant agents (CPAs) containing dimethylsulphoxide (DMSO), which have been shown to be toxic for clinical applications.

View Article and Find Full Text PDF

Background: Increased ribosome biogenesis is required for tumor growth. In this study, we investigated the function and underlying molecular mechanism of ribosome biogenesis factor (RBIS) in the progression of non-small cell lung cancer (NSCLC).

Methods: In our study, we conducted a comprehensive analysis to identify key genes implicated in ribosome biogenesis by leveraging a Gene Set Enrichment Analysis (GSEA) dataset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!