Differential regulation of calcium-activated potassium channels by dynamic intracellular calcium signals.

J Membr Biol

Faculty of Life Sciences, University of Manchester, 2nd Floor Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK.

Published: June 2010

Calcium (Ca(2+))-activated K(+) (K(Ca)) channels regulate membrane excitability and are activated by an increase in cytosolic Ca(2+) concentration ([Ca(2+)](i)), leading to membrane hyperpolarization. Most patch clamp experiments that measure K(Ca) currents use steady-state [Ca(2+)] buffered within the patch pipette. However, when cells are stimulated physiologically, [Ca(2+)](i) changes dynamically, for example during [Ca(2+)](i) oscillations. Therefore, the aim of the present study was to examine the effect of dynamic changes in [Ca(2+)](i) on small (SK3), intermediate (hIK1), and large conductance (BK) channels. HEK293 cells stably expressing each K(Ca) subtype in isolation were used to simultaneously measure agonist-evoked [Ca(2+)](i) signals, using indo-1 fluorescence, and current/voltage, using perforated patch clamp. Agonist-evoked [Ca(2+)](i) oscillations induced a corresponding K(Ca) current that faithfully followed the [Ca(2+)](i) in 13-50% of cells, suggesting a good synchronization. However, [Ca(2+)](i) and K(Ca) current was much less synchronized in 50-76% of cells that exhibited Ca(2+)-independent current events (55% of SK3-, 50% of hIK1-, and 53% of BK-expressing cells) and current-independent [Ca(2+)](i) events (18% SK3- and 33% of BK-expressing cells). Moreover, in BK-expressing cells, where [Ca(2+)](i) and K(Ca) current was least synchronized, 36% of total [Ca(2+)](i) spikes occurred without activating a corresponding K(Ca) current spike, suggesting that BK(Ca) channels were either inhibited or had become desensitized. This desynchronization between dynamic [Ca(2+)](i) and K(Ca) current suggests that this relationship is more complex than could be predicted from steady-state [Ca(2+)](i) and K(Ca) current. These phenomena may be important for encoding stimulus-response coupling in various cell types.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00232-010-9266-1DOI Listing

Publication Analysis

Top Keywords

kca current
24
[ca2+]i kca
16
[ca2+]i
13
bk-expressing cells
12
kca
9
patch clamp
8
[ca2+]i oscillations
8
agonist-evoked [ca2+]i
8
corresponding kca
8
current synchronized
8

Similar Publications

Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells.

Cells

January 2025

Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.

Article Synopsis
  • Amniotic fluid contains stem cells (AF-SCs) that have potential uses in regenerative medicine for treating various injuries and diseases.
  • When exposed to basic Fibroblast Growth Factor (bFGF), AF-SCs show the ability to survive and migrate in a rat brain model, resembling characteristics of neuronal/glial progenitor cells.
  • The study employs electrophysiological techniques to identify specific potassium currents in AF-SCs and confirms that histamine can influence calcium dynamics and potassium current activation in these cells.
View Article and Find Full Text PDF

Peptide Toxins from Marine Snails with Activity on Potassium Channels and/or Currents.

Toxins (Basel)

November 2024

Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico.

Toxins from snails are peptides characterized by a great structural and functional diversity. They have a high affinity for a wide range of membrane proteins such as ion channels, neurotransmitter transporters, and G protein-coupled receptors. Potassium ion channels are integral proteins of cell membranes that play vital roles in physiological processes in muscle and neuron cells, among others, and reports in the literature indicate that perturbation in their function (by mutations or ectopic expression) may result in the development and progression of different ailments in humans.

View Article and Find Full Text PDF

Background: Physical fitness in childhood and adolescence is associated with a variety of health outcomes and is a powerful marker of current and future health. However, inconsistencies in tests and protocols limit international monitoring and surveillance. The objective of the study was to seek international consensus on a proposed, evidence-informed, Youth Fitness International Test (YFIT) battery and protocols for health monitoring and surveillance in children and adolescents aged 6-18 years.

View Article and Find Full Text PDF

The objective of the current research was to evaluate the effects of incorporating kappa-carrageenan (KCA) coating with dill essential oil (DEO), in conjunction with oxygen absorber (OA) packaging, on the quality attributes of rainbow trout fillets throughout a 20-day period of refrigerated storage. The administered treatments included OA, KCA + OA, KCA + DEO, KCA + DEO + OA, and control. Treating the trout fillets with DEO-loaded coating and/or using OA packaging was found to be more effective in restricting the growth of total mesophilic and psychrotrophic bacteria, Enterobacteriaceae, and lactic acid bacteria.

View Article and Find Full Text PDF
Article Synopsis
  • Dual immune checkpoint blockade (ICB) using CTLA4 and PD-(L)1 inhibitors shows improved anti-tumor effectiveness and immune toxicity compared to PD-(L)1 inhibitors alone in advanced non-small-cell lung cancer (NSCLC) patients.
  • Patients with mutations in STK11 and/or KEAP1 genes benefit more from the combination treatment compared to those receiving only PD-(L)1 inhibitors, as shown in the POSEIDON trial.
  • The loss of KEAP1 serves as a strong predictor for the success of dual ICB, as it leads to a more favorable outcome by changing the tumor's immune environment to better engage CD4 and CD8 T cells for anti-tumor activity. *
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!