Dkk1 stabilizes Wnt co-receptor LRP6: implication for Wnt ligand-induced LRP6 down-regulation.

PLoS One

Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama, USA.

Published: June 2010

Background: The low density lipoprotein receptor-related protein-6 (LRP6) is an essential co-receptor for canonical Wnt signaling. Dickkopf 1 (Dkk1), a major secreted Wnt signaling antagonist, binds to LRP6 with high affinity and prevents the Frizzled-Wnt-LRP6 complex formation in response to Wnts. Previous studies have demonstrated that Dkk1 promotes LRP6 internalization and degradation when it forms a ternary complex with the cell surface receptor Kremen.

Methodology/principal Findings: In the present study, we found that transfected Dkk1 induces LRP6 accumulation while inhibiting Wnt/LRP6 signaling. Treatment with Dkk1-conditioned medium or recombinant Dkk1 protein stabilized LRP6 with a prolonged half-life and induces LRP6 accumulation both at the cell surface and in endosomes. We also demonstrated that Kremen2 co-expression abrogated the effect of Dkk1 on LRP6 accumulation, indicating that the effect of Kremen2 is dominant over Dkk1 regulation of LRP6. Furthermore, we found that Wnt3A treatment induces LRP6 down-regulation, an effect paralleled with a Wnt/LRP6 signaling decay, and that Dkk1 treatment blocked Wnt3A-induced LRP6 down-regulation. Finally, we found that LRP6 turnover was blocked by an inhibitor of caveolae-mediated endocytosis.

Conclusions/significance: Our results reveal a novel role for Dkk1 in preventing Wnt ligand-induced LRP6 down-regulation and contribute significantly to our understanding of Dkk1 function in Wnt/LRP6 signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882367PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011014PLOS

Publication Analysis

Top Keywords

lrp6 down-regulation
16
lrp6
14
induces lrp6
12
lrp6 accumulation
12
wnt/lrp6 signaling
12
dkk1
10
wnt ligand-induced
8
ligand-induced lrp6
8
wnt signaling
8
cell surface
8

Similar Publications

Sclerostin (SOST), a Wnt signaling pathway inhibitor, is involved in the pathogenesis of skeletal disorders. This study investigated the impact of the GKWWRPS motif on the PNAIG motif in Loop 2 of SOST, which is accountable for the interactions with the LRP6 protein that triggers the down-regulation of the Wnt signaling pathway. Single amino acid mutations on the GKWWRPS motif, hypothesized to have a probable stabilization effect towards the PNAIG motif, led to a significant reduction in the primary interactions between the SOST and LRP6 proteins.

View Article and Find Full Text PDF

Bladder cancer remains a significant health challenge due to its high recurrence and progression rates. This study aims to evaluate the role of POLR3G in the development and progression of bladder cancer and the potential of POLR3G to serve as a novel therapeutic target. We constructed a bladder cancer model in Wistar rats by administering N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN), which successfully induced a transition from normal mucosa to hyperplasia and ultimately to urothelial carcinoma.

View Article and Find Full Text PDF

RIPK4 downregulation impairs Wnt3A-stimulated invasiveness via Wnt/β-catenin signaling in melanoma cells and tumor growth in vivo.

Cell Signal

January 2024

Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland. Electronic address:

Purpose: The role of Wnt signaling in oncogenesis and drug resistance is well known. Receptor-interacting protein kinase (RIPK4) contributing to the increased activity of many signaling pathways, including Wnt/β-catenin, may be an important target for designing new drugs for metastatic melanoma, but its role in melanoma is not fully understood.

Methods: We tested the effect of genetic manipulation of RIPK4 (CRISPR/Cas9) on xenograft growth.

View Article and Find Full Text PDF

Synthetic miR-26a mimics delivered by tumor exosomes repress hepatocellular carcinoma through downregulating lymphoid enhancer factor 1.

Hepatol Int

October 2023

Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.

Background: The dysregulation of exosomal microRNAs plays an important role in the progression of hepatocarcinogenesis. In this study, we investigated the therapeutic potential of synthetic exosomal miR-26a against HCC cells and explored the feasibility of tumor-derived exosomes as drug delivery vehicles.

Methods: Proliferation and migration assays were performed to examine the effects of miR-26a on HCC in vitro.

View Article and Find Full Text PDF

X-linked hypophosphatemia (XLH), an inheritable form of rickets is caused due to mutation in Phex gene. Several factors are linked to the disease's aetiology, including non-coding RNA molecules (miRNAs), which are key post-transcriptional regulators of gene expression and play a significant role in osteoblast functions. MicroRNAs sequence analysis showed differentially regulated miRNAs in phex silenced osteoblast cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!