Cyclosporin A (CsA), a potent immunosuppressant, is known to bind with high specificity to cyclophilin (CyP), a 17.7 kDa protein with peptidyl-prolyl isomerase activity. In order to investigate the three-dimensional structure of the CsA/CyP complex, we have applied a variety of multidimensional NMR methods in the study of uniformly 13C-labeled CsA bound to cyclophilin. The 1H and 13C NMR signals of cyclosporin A in the bound state have been assigned, and from a quantitative interpretation of the 3D NOE data, the bound conformation of CsA has been determined. Three-dimensional structures of CsA calculated from the NOE data by using a distance geometry/simulated appealing protocol were found to be very different from previously determined crystalline and solution conformations of uncomplexed CsA. In addition, from CsA/CyP NOEs, the portions of CsA that interact with cyclophilin were identified. For the most part, those CsA residues with NOEs to cyclophilin were the same residues important for cyclophilin binding and immunosuppressive activity as determined from structure/activity relationships. The structural information derived in this study together with the known structure/activity relationships for CsA analogues may prove useful in the design of improved immunosuppressants. Moreover, the approach that is described for obtaining the structural information is widely applicable to the study of small molecule/large molecule interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00240a030DOI Listing

Publication Analysis

Top Keywords

bound cyclophilin
8
bound conformation
8
csa
8
noe data
8
structure/activity relationships
8
cyclophilin
6
bound
5
nmr studies
4
studies [u-13c]cyclosporin
4
[u-13c]cyclosporin bound
4

Similar Publications

Passage of the HIV capsid cracks the nuclear pore.

Cell

January 2025

Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:

Upon infection, human immunodeficiency virus type 1 (HIV-1) releases its cone-shaped capsid into the cytoplasm of infected T cells and macrophages. The capsid enters the nuclear pore complex (NPC), driven by interactions with numerous phenylalanine-glycine (FG)-repeat nucleoporins (FG-Nups). Whether NPCs structurally adapt to capsid passage and whether capsids are modified during passage remains unknown, however.

View Article and Find Full Text PDF

The bacterial chaperone Trigger factor (TF) binds to ribosome-nascent chain complexes (RNCs) and cotranslationally aids the folding of proteins in bacteria. Decades of studies have given a broad, but often conflicting, description of the substrate specificity of TF, its RNC-binding dynamics, and competition with other RNC-binding factors, such as the Signal Recognition Particle (SRP). Previous RNC-binding kinetics experiments were commonly conducted on stalled RNCs in reconstituted systems, and consequently, may not be representative of the interaction of TF with ribosomes translating mRNA in the cytoplasm of the cell.

View Article and Find Full Text PDF

FKBP5 Regulates the Osteogenesis of Human Adipose-derived Mesenchymal Stem Cells.

Curr Med Sci

December 2024

Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.

Objective: Human adipose-derived stem cells (ASCs) have shown considerable potential for tissue regeneration. FK506 binding protein (FKBP) 5 is a cochaperone of several proteins. The purpose of this work was to explore the function of FKBP5 in ASC osteogenesis.

View Article and Find Full Text PDF

Approximately 3.4 million patients worldwide are diagnosed each year with cancers that have pathogenic mutations in one of three RAS proto-oncogenes (KRAS, NRAS and HRAS). These mutations impair the GTPase activity of RAS, leading to activation of downstream signalling and proliferation.

View Article and Find Full Text PDF

Cell cycle regulatory enzyme Pin1 both catalyzes pSer/Thr--Pro isomerization and binds the same motif separately in its WW domain. To better understand the function of Pin1, a way to separate these activities is needed. An unnatural peptide library, RCO-pSer-Pro-NHR, was designed to identify ligands specific for the Pin1 WW domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!