Nearly 20years of industrial scale metal mining operations in Tibet have caused an impact on the region's surface water quality. However, no information with respect to the pollution has been provided to the public. The aim of this work was to evaluate the chemical quality of the stream water and to assess the present and future potential risks of acid mine drainage to the regional and downstream environments. This study, based on data collected in 2006, 2007 and 2008 in the Gyama valley, using the Environmental Risk Index (I(ER)) documents that elevated concentrations of Cu, Pb, Zn, Mn, Fe and Al in the surface water and streambed at the upper/middle part of the valley pose a considerably high risk to the local environment. In contrast, the risk level at the stream source area is zero and only minor risk at the lower reaches. The iron and copper contamination of the upper/middle part of the river appears to be both natural and accelerated by the mining activities. The level of dissolved contaminants in the water decreases within short distance downstream due to precipitation and sorption to the streambed and strong dilution by a tributary stream and eventually by the Lhasa River. A high content of heavy metals in the stream sediments as well as in a number of tailings with gangue and material from the ore processing, poses a great potential threat to the downstream water users. Environmental changes such as global warming or increased mining activity may increase the mobility of these pools of heavy metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2010.05.015 | DOI Listing |
J Appl Biomater Funct Mater
January 2025
Faculty of Dentistry, Department of Periodontics, Complutense University of Madrid, Madrid, Spain.
Peri-implant diseases, such as peri-implantitis, affect up to 47% of dental implant recipients, primarily due to biofilm formation. Current decontamination methods vary in efficacy, prompting interest in polymeric nanoparticles (NPs) for their antimicrobial and protein-specific cleaning properties. This study evaluated the efficacy of polymeric nanoparticles (NPs) in decontaminating titanium dental implants by removing proteinaceous pellicle layers and resisting recontamination.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
The stomatal phenotype is a crucial microscopic characteristic of the leaf surface, and modulating the stomata of maize leaves can enhance photosynthetic carbon assimilation and water use efficiency, thereby playing a vital role in maize yield formation. The evolving imaging and image processing technologies offer effective tools for precise analysis of stomatal phenotypes. This study employed Jingnongke 728 and its parental inbred to capture stomatal images from various leaf positions and abaxial surfaces during key reproductive stages using rapid scanning electron microscopy.
View Article and Find Full Text PDFJACS Au
January 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
Slow mass transfer processes between inert emerging contaminants (ECs) and dissolved oxygen (DO) limit natural water self-purification; thus, excessive energy consumption is necessary to achieve ECs removal, which has become a longstanding global challenge. Here, we propose an innovative water self-purification expansion strategy by constructing asymmetric surfaces that could modulate trace HO as trigger rather than oxidant to bridge a channel between inert ECs and natural dissolved oxygen, achieved through a dual-reaction-center (DRC) catalyst consisting of Cu/Co lattice-substituted ZnO nanorods (CCZO-NRs). During water purification, the bond lengths of emerging contaminants (ECs) adsorbed on the asymmetric surface were stretched, and this stretching was further enhanced by HO mediation, resulting in a significant reduction of bond-breaking energy barriers.
View Article and Find Full Text PDFJACS Au
January 2025
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
The synthesis of high-performance catalysts for volatile organic compounds (VOCs) degradation under humid conditions is essential for their practical industrial application. Herein, a codoping strategy was adopted to synthesize the N-CoO-C catalyst with N, C codoping for low-temperature ethyl acetate (EA) degradation under humid conditions. Results showed that N-CoO-C exhibited great catalytic activity ( = 177 °C) and water resistance (5.
View Article and Find Full Text PDFACS Appl Energy Mater
January 2025
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Electrolysis of impure water (such as seawater) has recently garnered research interest as it may enable hydrogen production at reduced costs. However, the tendency of impurity ions and other species to degrade electrocatalysts and membranes within an electrolyzer is a serious challenge. Here, we investigate the effects of copper impurities of varying concentrations on the hydrogen evolution reaction (HER) using platinum electrocatalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!