P-type calcium channels play a key role in the synaptic transmission between mammalian central neurons since a major part of calcium entering pre-synaptic terminals is delivered via these channels. Using conventional whole-cell patch clamp techniques we have studied the effect of mu-opioids on P-type calcium channels in acutely isolated Purkinje neurons from rat cerebellum. The selective mu-opioid agonist DAMGO (10nM) produced a small, but consistent facilitation of current through P-type calcium channels (10+/-1%, n=27, p<0.001). The effect of DAMGO was rapid (less than 10s) and fully reversible. This effect was both concentration and voltage-dependent. The EC(50) for the effect of DAMGO was 1.3+/-0.4nM and the saturating concentration was 100nM. The endogenous selective agonist of mu-opioid receptors, endomorphin-1 demonstrated similar action. Intracellular perfusion of Purkinje neurons with GTPgammaS (0.5mM) or GDPbetaS (0.5mM), as well as strong depolarizing pre-pulses (+50mV), did not eliminate facilitatory action of DAMGO on P-channels indicating that this effect is not mediated by G-proteins. Furthermore, the effect of DAMGO was preserved in the presence of a non-specific inhibitor of PKA and PKC (H7, 10microM) inside the cell. DAMGO-induced facilitation of P-current was almost completely abolished by the selective mu-opioid antagonist CTOP (100nM). These observations indicate that mu-type opioid receptors modulate P-type calcium channels in Purkinje neurons via G-protein-independent mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913230 | PMC |
http://dx.doi.org/10.1016/j.neulet.2010.06.015 | DOI Listing |
MicroPubl Biol
December 2024
Biology, University of Kentucky, Lexington, Kentucky, United States.
GV-58 is known to increase the opening time of the mammalian P-type calcium channel in presynaptic motor nerve terminals. GV-58 is suggested as a therapeutic agent for dampening the symptoms of amyotrophic lateral sclerosis. To further understand the mechanisms of GV-58 actions, the and crayfish neuromuscular junctions were used as models.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129.
Among new antimalarials discovered over the past decade are multiple chemical scaffolds that target P-type ATPase (ATP4). This essential protein is a Na pump responsible for the maintenance of Na homeostasis. ATP4 belongs to the type two-dimensional (2D) subfamily of P-type ATPases, for which no structures have been determined.
View Article and Find Full Text PDFTokai J Exp Clin Med
December 2024
Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
Luminescence
November 2024
Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.
The objective of this study was to synthesize strontium titanate (SrCeTiO) doped with Ce by solid state method. Its crystalline structure is SrCeTiO, and its bandgap ranges from ~3.3 to ~2.
View Article and Find Full Text PDFChemMedChem
November 2024
Chemistry, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia.
Small-molecule allosteric activators of the enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA) hold promise as novel experimental tools to manipulate intracellular calcium concentrations and as therapeutic agents to treat medical conditions associated with elevated cytosolic calcium levels. Here, we synthesized and characterized 20 analogs of the known allosteric SERCA activator CDN1163 and tested their ability to stimulate SERCA activity. The structures of the compounds varied in the alkyl group of the parent scaffold's ether moiety as well as in the composition of the nitrogenous aromatic ring system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!