In the stationary growth phase of bacteria, protein biosynthesis on ribosomes is suppressed, and the ribosomes are preserved in the cell by the formation of the 100S ribosome. The 100S ribosome is a dimer of the 70S ribosome and is formed by the binding of the ribosome modulation factor and the hibernation promoting factor. However, the binding mode between the two 70S ribosomes and the mechanism of complex formation are still poorly understood. Here, we report the structure of the 100S ribosome by electron cryomicroscopy and single-particle image analysis. The 100S ribosome purified from the cell in the stationary growth phase is composed of two transfer RNA-free 70S ribosomes, has two-fold symmetry, and is formed through interactions between their 30S subunits, where interactions between small subunit proteins, S2, S3 and S5, appear to be critical for the dimerization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.str.2010.02.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!