In this study, biodiesel was produced from sludge palm oil (SPO) using tolune-4-sulfonic monohydrate acid (PTSA) as an acid catalyst in different dosages in the presence of methanol to convert free fatty acid (FFA) to fatty acid methyl ester (FAME), followed by a transesterification process using an alkaline catalyst. In the first step, acid catalyzed esterification reduced the high FFA content of SPO to less than 2% with the different dosages of PTSA. The optimum conditions for pretreatment process by esterification were 0.75% (w/w) dosage of PTSA to SPO, 10:1 M ratio, 60 °C temperature, 60 min reaction time and 400 rpm stirrer speed. The highest yield of biodiesel after transesterification and purification processes was 76.62% with 0.07% FFA and 96% ester content. The biodiesel produced was favorable as compared to EN 14214 and ASTM 6751 standard. This study shows a potential exploitation of SPO as a new feedstock for the production of biodiesel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2010.05.045 | DOI Listing |
Aquat Toxicol
December 2024
Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Pakistan.
The presence of microplastics (MPs) in aquatic ecosystem has become a pressing global concern. MPs pose a significant threat to aquatic ecosystems, with devastating consequences for both aquatic life and human health. Notably, freshwater ecosystems are particularly vulnerable to MPs pollution.
View Article and Find Full Text PDFFront Microbiol
November 2024
Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Labelled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, University Cadi Ayyad (UCA), Marrakech, Morocco.
Three different enzymes alkaline phosphatase, Urease and Dehydrogenase were measured during this study to monitor the organic matter dynamics during semi-industrial composting of mixture A with 1/3 sludge+2/3 palm waste and mixture B with ½ sludge+1/2 palm waste. The phosphatase activity was higher for Mix-A (398.7 µg PNP g h) than Mix-B (265.
View Article and Find Full Text PDFBioprocess Biosyst Eng
November 2024
School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
The study focused on rhamnolipid production by batch fermentation of Pseudomonas aeruginosa USM-AR2 in a 3-L stirred-tank reactor (STR) using palm sludge oil (PSO) as the sole carbon source. The impact of various agitation rates towards the dispersion of PSO in the medium was evaluated to improve biomass growth and rhamnolipid production. A mechanical foam collection and recycling system was designed and retrofitted to the STR to overcome severe foam formation during fermentation.
View Article and Find Full Text PDFUltrason Sonochem
December 2024
Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand. Electronic address:
This study investigates the potential of fused deposition modeling (FDM) three-dimensional (3D) printing techniques for manufacturing catalytic static mixers during biodiesel synthesis. The printed catalytic mixing elements comprises acrylonitrile butadiene styrene (ABS) plastic with 15 wt% calcium oxide (CaO) as a solid catalyst. When the reactants flowed through the CaO/ABS mixing device, the blending and acceleration processes were both significantly impacted.
View Article and Find Full Text PDFFront Microbiol
September 2024
Consultant, Hamilton, New Zealand.
Estrogens are a growing problem in wastewater discharges because they are continuously entering the environment and are biologically active at extremely low concentrations. Their effects on wildlife were first identified several decades before, but the environmental limits and the remedial measures are still not completely elucidated. Most conventional treatment processes were not designed with sufficiently long retention times to effectively remove estrogens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!