Gambierol is a complex marine toxin first isolated with ciguatoxins from cell cultures of the toxic dinoflagellate Gambierdiscus toxicus. Despite the chemical complexity of the polycyclic ether toxin, the total successful synthesis of gambierol has been achieved by different chemical strategies. In the present work the effects of synthetic gambierol on mouse and frog skeletal neuromuscular preparations and Xenopus skeletal myocytes have been studied. Gambierol (0.1-5 muM) significantly increased isometric twitch tension in neuromuscular preparations stimulated through the motor nerve. Less twitch augmentation was observed in directly stimulated muscles when comparing twitch tension-time integrals obtained by nerve stimulation. Also, gambierol induced small spontaneous muscle contraction originating from presynaptic activity that was completely inhibited by d-tubocurarine. Gambierol slowed the rate of muscle action potential repolarization, triggered spontaneous and/or repetitive action potentials, and neither affected action potential amplitude nor overshoot in skeletal muscle fibers. These results suggest that gambierol through an action on voltage-gated K(+) channels prolongs the duration of action potentials, enhances the extent and time course of Ca(2+) release from the sarcoplasmic reticulum, and increases twitch tension generation. Further evidence is provided that gambierol at sub-micromolar concentrations blocks a fast inactivating outward K(+) current that is responsible for action potential prolongation in Xenopus skeletal myocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2010.06.001 | DOI Listing |
Sci Rep
December 2024
India Meteorological Department, New Delhi, 110003, India.
Desert locusts, notorious for their ruinous impact on agriculture, threaten over 20% of Earth's landmass, prompting billions in losses and global food scarcity concerns. With billions of these locusts invading agrarian lands, this is no longer a thing of the past. Recent invasions, such as those in India, where losses reached US$ 3 billion in 2019-20 alone, underscore the urgency of action.
View Article and Find Full Text PDFSci Rep
December 2024
Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK.
Network hypersynchrony is emerging as an important system-level mechanism underlying seizures, as well as cognitive and behavioural impairments, in children with structural brain abnormalities. We investigated patterns of single neuron action potential behaviour in 206 neurons recorded from tubers, transmantle tails of tubers and normal looking cortex in 3 children with tuberous sclerosis. The patterns of neuronal firing on a neuron-by-neuron (autocorrelation) basis did not reveal any differences as a function of anatomy.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.
Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.
View Article and Find Full Text PDFSci Rep
December 2024
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém, 8200, Hungary.
Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, China.
Cancer, characterized by uncontrolled growth and spread of abnormal cells potentially influencing almost all tissues in the body, is one of the most devastating and lethal diseases throughout the world. Chemotherapy is one of the principal approaches for cancer treatment, but multidrug resistance and severe side effects represent the main barriers to the success of therapy, creating a vital need to develop novel chemotherapeutic agents. The 1,2,3-triazole moiety can be conveniently constructed by "click chemistry" and could exert diverse noncovalent interactions with various enzymes in cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!