We fabricated hexagonal graphene nanomeshes (GNMs) with sub-10 nm ribbon width. The fabrication combines nanoimprint lithography, block-copolymer self-assembly for high-resolution nanoimprint template patterning, and electrostatic printing of graphene. Graphene field-effect transistors (GFETs) made from GNMs exhibit very different electronic characteristics in comparison with unpatterned GFETs even at room temperature. We observed multiplateaus in the drain current-gate voltage dependence as well as an enhancement of ON/OFF current ratio with reduction of the average ribbon width of GNMs. These effects are attributed to the formation of electronic subbands and a bandgap in GNMs. Such mesoscopic graphene structures and the nanofabrication methods could be employed to construct future electronic devices based on graphene superlattices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl100750v | DOI Listing |
Small Methods
January 2025
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
Bilayer graphene ribbons (GRs) hold great promise for the fabrication of next-generation nanodevices, thanks to unparalleled electronic properties, especially the tunable bandgap in association with twist angle, ribbon width, edge structure, and interlayer coupling. A common challenge in manufacturing bilayer GRs via templated chemical vapor deposition (CVD) approach is uncontrollable dewetting of micro- and nano-scaled patterned metal substrates. Herein, a confined CVD synthetic strategy of bilayer GR arrays is proposed, by utilizing the bifunctional Ni as a buffered adhesion layer to regulate the anisotropic dewetting of metal film in the V-groove and as a carbon-dissolution regulated metal to initiate the bilayer nucleation.
View Article and Find Full Text PDFInt J Pharm X
December 2024
Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitaetsstrasse 1, 40225 Düsseldorf, Germany.
Elastic recovery ( ) has been investigated and discussed extensively in the field of tableting. However, until now only limited data is available regarding in roll compaction. Therefore, a previously established in-line measurement technique was rolled out to further investigate the kinetics of in roll compaction and the effects of specific compaction force ( ) and roll speed ( ).
View Article and Find Full Text PDFNanoscale
January 2025
Department of Physics, OSED, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), Xiamen University, Xiamen 361005, China.
Int J Pharm
December 2024
Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS, Cambridge, UK.
Roller compaction is a crucial unit operation in pharmaceutical manufacturing, with its ribbon porosity widely recognised as a critical quality attribute. Terahertz spectroscopy has emerged as a fast and non-destructive technique to measure porosity in pharmaceutical products. From a sensing perspective, the irregular shape and uneven surface of fragmented ribbon pieces can affect the accuracy and precision of the measurements, particularly for techniques that probe only a small sampling volume.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States.
The design and characterization of thin-film ribbon cables as electrical interconnects for implanted neural stimulation and recording devices are reported. Our goal is to develop flexible and extensible ribbon cables that integrate with thin-film, cortical penetrating microelectrode arrays (MEAs). Amorphous silicon carbide (a-SiC) and polyimide were employed as the structural elements of the ribbon cables and multilayer titanium/gold thin films as electrical traces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!