Plasmacytoid dendritic cell-induced migration and activation of NK cells in vivo.

Eur J Immunol

Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.

Published: August 2010

NK cells are cytotoxic cells of the innate immune system. They have been found to be critical in the defense against infections and also against some tumors. Recent studies have shown that NK cells require signals from accessory cells to induce their recruitment and activation at the site of infection or tumor growth. In this study, we examined whether plasmacytoid DC (pDC) could recruit and activate NK cells in vivo. When CpG-stimulated pDC were injected i.p. to C57BL/6 mice, they efficiently recruited NK cells, a process that was dependent on NK cell CXCR3 and CD62L and in part on CCR5. NK cells isolated from the peritoneum of mice inoculated with TLR7/8 or TLR9-stimulated pDC exhibited greater cytotoxicity against YAC-1 tumor cells than NK cells recovered from mice inoculated with control pDC. The present results are discussed in relation to pDC-induced NK cell migration and activation in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200940098DOI Listing

Publication Analysis

Top Keywords

cells
10
migration activation
8
cells vivo
8
mice inoculated
8
plasmacytoid dendritic
4
dendritic cell-induced
4
cell-induced migration
4
activation cells
4
vivo cells
4
cells cytotoxic
4

Similar Publications

Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome.

Tissue Barriers

January 2025

Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!