A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a three-dimensional model for rapid evaluation of bone substitutes in vitro: effect of the 45S5 bioglass. | LitMetric

The evaluation of innovative bone substitutes requires the development of an optimal model close to physiological conditions. An interesting alternative is the use of an immortalized cell line to construct multicellular spheroids, that is, three-dimensional (3D) cultures. In this study, a modified hanging drops method has resulted in the generation of spheroids with a well-established human fetal osteoblasts line (hFOB 1.19), and tests have been focused on the effect of 45S5 bioglass ionic dissolution products in comparison with two-dimensional (2D) cultures. Depending on cell culture type, quantitative analysis (cell proliferation, viability/cytotoxicity, and cellular cycle) and qualitative analysis (electron microscopy and genes expression) showed a differential effect. Cell proliferation was enhanced in 2D-conditioned cultures in accordance with literature data, but decreased in 3D cultures submitted to the same conditions, without change of gene expression patterns. The decrease of cell proliferation, observed in conditioned spheroids, appears to be in agreement with clinical observations showing the insufficiency of commercially available bioglasses for bone repairing within nonbearing sites, such as periodontal defects or small bone filling, in general. Therefore, we suggest that this model could be adapted to the screening of innovative bioactive materials by laboratory techniques already available and extended monitoring of their bioactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32818DOI Listing

Publication Analysis

Top Keywords

cell proliferation
12
bone substitutes
8
45s5 bioglass
8
cell
5
development three-dimensional
4
three-dimensional model
4
model rapid
4
rapid evaluation
4
bone
4
evaluation bone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!