Development of DNA aptamers using Cell-SELEX.

Nat Protoc

Center for Research at Bio/Nano Interface, Department of Chemistry, University of Florida, Gainesville, Florida, USA.

Published: June 2010

In the past two decades, high-affinity nucleic acid aptamers have been developed for a wide variety of pure molecules and complex systems such as live cells. Conceptually, aptamers are developed by an evolutionary process, whereby, as selection progresses, sequences with a certain conformation capable of binding to the target of interest emerge and dominate the pool. This protocol, cell-SELEX (systematic evolution of ligands by exponential enrichment), is a method that can generate DNA aptamers that can bind specifically to a cell type of interest. Commonly, a cancer cell line is used as the target to generate aptamers that can differentiate that cell type from other cancers or normal cells. A single-stranded DNA (ssDNA) library pool is incubated with the target cells. Nonbinding sequences are washed off and bound sequences are recovered from the cells by heating cell-DNA complexes at 95 degrees C, followed by centrifugation. The recovered pool is incubated with the control cell line to filter out the sequences that bind to common molecules on both the target and the control, leading to the enrichment of specific binders to the target. Binding sequences are amplified by PCR using fluorescein isothiocyanate-labeled sense and biotin-labeled antisense primers. This is followed by removal of antisense strands to generate an ssDNA pool for subsequent rounds of selection. The enrichment of the selected pools is monitored by flow cytometry binding assays, with selected pools having increased fluorescence compared with the unselected DNA library. The procedure, from design of oligonucleotides to enrichment of the selected pools, takes approximately 3 months.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nprot.2010.66DOI Listing

Publication Analysis

Top Keywords

selected pools
12
dna aptamers
8
aptamers developed
8
cell type
8
pool incubated
8
enrichment selected
8
aptamers
5
sequences
5
target
5
development dna
4

Similar Publications

Copper is an essential nutrient for sustaining vital cellular processes spanning respiration, metabolism, and proliferation. However, loss of copper homeostasis, particularly misregulation of loosely bound copper ions which are defined as the labile copper pool, occurs in major diseases such as cancer, where tumor growth and metastasis have a heightened requirement for this metal. To help decipher the role of copper in the etiology of cancer, we report a histochemical activity-based sensing approach that enables systematic, high-throughput profiling of labile copper status across many cell lines in parallel.

View Article and Find Full Text PDF

The accumulation of defective polypeptides in cells is a major cause of various diseases. However, probing defective proteins is difficult because no currently available method can retrieve unstable defective translational products in a soluble state. To overcome this issue, there is a need for a molecular device specific to structurally defective polypeptides.

View Article and Find Full Text PDF

Introduction: Living with a chronic disease impacts many aspects of life, including the ability to participate in activities that enable interactions with others in society, that is, social participation (SP). Despite efforts to monitor the quality of care and life of chronically ill people in Belgium, no disease-specific patient-reported measures (PRMs) have been used. These tools are essential to understand SP and to develop evidence-based recommendations to support its improvement.

View Article and Find Full Text PDF

The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.

View Article and Find Full Text PDF

Microscale intertidal habitats modulate shell break resistance of the prey; Implications for prey selection.

Mar Environ Res

January 2025

Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas, Valdivia, Chile; Programa de Pós-Graduação em Sistemas Aquáticos Tropicais, Universidade Estadual de Santa Cruz (UESC), Salobrinho, 45662-900, Ihéus, Brazil. Electronic address:

Intertidal microhabitats provide special conditions to the organisms that inhabit them and to some of their morpho-protective characteristics. Tidal pools, under the influence of acidified freshwater, may affect the characteristics of the protective shells of prey and have repercussions on predation. The shells of Perumytilus purpuratus from such tidepools are more fragile than those of their counterparts from the vertical intertidal walls of the same area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!