Organic nitrates have been used for over a century in cardiovascular therapy and are still widely used in the treatment of acute coronary syndromes, chronic angina pectoris, and congestive heart failure. Nitrates, together with sodium nitroprusside, generally referred to as nitrovasodilators, exert their biologic effects via the release of nitric oxide. They are also known as nitric oxide donors. The mechanism of action of these drugs is traditionally believed to lie in their arterial vasodilation and venodilation effects, resulting in an improvement of coronary artery blood supply and/or reduction of cardiac workload in the treatment of coronary artery disease and congestive heart failure. Recently it has been recognized that these drugs also have intrinsic antiplatelet and antithrombotic effects, demonstrated both in vitro and in vivo, which would add further rationale for the use of these drugs in atherothrombotic diseases. Research has shown that nitrovasodilators can nonselectively inhibit platelet aggregation induced by multiple stimuli. However, clinical trials have yielded conflicting results regarding clinical outcome, especially with long-term nitrate use. The potentially beneficial effects of nitrates could be negated by the development of tolerance and the generation of deleterious oxidative stress causing endothelial dysfunction during continuous nitrate administration. Much progress has been made in the development of new nitric oxide donors devoid of oxidant-generating properties. Novel combination therapies with nitrovasodilators plus antioxidants or agents with antioxidant properties have shown promise in reducing or reversing tolerance, potentiating antiplatelet effects, and improving clinical outcome. It is expected that clinical introduction of novel nitrovasodilator regimens will provide a new approach to the prevention and treatment of atherothrombotic diseases. Large-scale clinical trials will ultimately provide the evidence-based answers.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CRD.0b013e3181d74582DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
antiplatelet effects
8
effects nitrates
8
congestive heart
8
heart failure
8
oxide donors
8
coronary artery
8
atherothrombotic diseases
8
clinical trials
8
clinical outcome
8

Similar Publications

Background: The risk of cardiovascular disease (CVD) in patients with chronic kidney disease (CKD) is estimated to be far greater than that in the general population. Adropin regulates endothelial function and may play a role in the pathogenesis of CVD. Angiotensin-converting enzyme inhibitor (ACEI) treatment was reported to have a protective effect on both renal and cardiovascular function.

View Article and Find Full Text PDF

Mycobacterial hemerythrin-like proteins (HLPs) are important for the survival of pathogens in macrophages. Their molecular mechanisms of function remain poorly defined but recent studies point to their possible role in nitric oxide (NO) scavenging. Unlike any nonheme diiron protein studied so far, the diferric HLP from (-HLP) reacts with NO in a multistep fashion to consume four NO molecules per diiron center.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss, Lewy body build-up, and motor dysfunction. One of the primary pathogenic mechanisms of PD development is autophagy dysfunction and nitric oxide-mediated neurotoxicity.

Purpose: The current study focuses on autophagy and nitric oxide (NO) signaling roles in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated PD mice and their protection by their modulators.

View Article and Find Full Text PDF

Hallmarks of aging: middle-aging hypovascularity, tissue perfusion and nitric oxide perspective on healthspan.

Front Aging

January 2025

Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia.

Aging is a complex process marked by various changes at both cellular and systemic levels, impacting the functioning and lifespan of organisms. Over time, researchers have pinpointed several significant hallmarks of aging that lead to the gradual deterioration of tissue function, regulation, and homeostasis associated with aging in humans. Despite this, the intricate interactions and cumulative effects of these hallmarks are still mostly uncharted territory.

View Article and Find Full Text PDF

Background: Numerous studies have shown a link between circadian rhythms disruptions and a higher risk of obesity. This article aims to conduct an extensive bibliometric analysis to deepen our understanding of the relationship between circadian rhythms and obesity.

Methods: The literature related to the circadian rhythm of obesity, published from the inception of the Web of Science Core Collection (WoSCC) until June 30, 2024, was extracted from the WoSCC databases (SCIE, SSCI, ESCI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!