In this study, porous poly(lactide-co-glycolide) (PLGA) (50/50) microspheres have been fabricated by the gas-foaming technique using ammonium bicarbonate as a gas-foaming agent. Microspheres of different porosities have been formulated by varying the concentration of the gas-foaming agent (0%, 5%, 10% and 15% w/v). These microspheres were characterized for particle size, porosity and average pore size, morphology, water uptake ratio and surface area and it was found that the porosity, pore size and surface area increased on increasing the concentration of the gas-foaming agent. Further, the effect of porosity on degradation behavior was evaluated over a 12 week period by measuring changes in mass, pH, molecular weight and morphology. Porosity was found to have an inverse relationship with degradation rate. To render the surface of the microspheres biomimetic, peptide P-15 was coupled to the surface of these microspheres. In vitro cell viability, proliferation and morphological evaluation were carried out on these microsphere scaffolds using MG-63 cell line to study the effect of the porosity and pore size of scaffolds and to evaluate the effect of P-15 on cell growth on porous scaffolds. MTT assay, actin, alizarin staining and SEM revealed the potential of biomimetic porous PLGA (50/50) microspheres as scaffolds for tissue engineering. As shown in graphical representation, an attempt has been made to correlate the cell behavior on the scaffolds (growth, proliferation and cell death) with the concurrent degradation of the porous microsphere scaffold as a function of time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-6041/5/4/045001 | DOI Listing |
Int J Biol Macromol
December 2024
National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran. Electronic address:
This study presents the development of a novel piezoelectric scaffold for bone tissue engineering composed of poly(ε-caprolactone) (PCL), thermoplastic polyurethane (TPU), barium titanate (BT), and cellulose nanocrystals (CNC). PCL and TPU are considered advantageous materials because of their ease of processing, versatility in design, and ability to degrade over time; however, their inherent immiscibility poses challenges to achieving optimal porous structures. In this study, porous scaffolds were produced using gas foaming and salt leaching techniques, resulting in highly porous interconnected scaffolds exhibiting considerable elasticity that is suitable for dynamic cell culture while avoiding the use of toxic solvents.
View Article and Find Full Text PDFSci Rep
December 2024
Materials Research Laboratory, National Centre for Nuclear Research, Otwock, 05-400, Poland.
This study determines the possibilities of synthesis of porous glass-ceramic materials based on Bioglass 45S5 using different methods obtained porous materials. In this work used foaming with sintering method for the set: bioglass 45S5 + glass cullet (CRT) + glass water (WG) and method sintering with forming-pore agents for the: bioglass + glass water (WG) + dried banana peels. The sets were melting and the next step sintering process.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Electronic address:
Extensive traumatic injuries and difficult-to-heal wounds, induced by many circumstances, impose a significant social and economic burden on an annual basis. Thus, innovative wound dressings that encourage wound healing are greatly needed. In this work, we prepared a novel insect chitosan (MCS) using waste pupal shells from housefly (Musca domestica L.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
The management of critical-sized bone defects poses significant clinical challenges, particularly in the battlefield and trauma-related injuries. However, bone tissue engineering scaffolds that satisfy high porosity and good angiogenic and osteogenic functions are scarce. In this study, 3D nanofiber scaffolds decorated with strontium nanoparticles (3DS-Sr) were fabricated by combining electrospinning and gas foaming.
View Article and Find Full Text PDFBiofabrication
September 2024
Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
Tissue engineered constructs prepared using conventional scaffold-based approaches have the potential to repair or regenerate damaged tissues and organs. Various scaffold fabrication strategies such as electrospinning, solvent casting, particulate leaching, gas foaming, hydrogels, freeze-drying, and 3D bioprinting have been used to fabricate artificial tissues. In recent times, 3D bioprinting has been predominantly used in various biomedical fields, including healthcare and pharmaceutical applications due to precision in 3D geometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!