Spinal muscular atrophy is one of the most common genetic causes of death in childhood, and there is currently no effective treatment. The disease is caused by mutations in the survival motor neuron gene. Gene therapy aimed at restoring the protein encoded by this gene is a rational therapeutic approach to ameliorate the disease phenotype. We previously reported that intramuscular delivery of a lentiviral vector expressing survival motor neuron increased the life expectancy of transgenic mice with spinal muscular atrophy. The marginal efficacy of this therapeutic approach, however, prompted us to explore different strategies for gene therapy delivery to motor neurons to achieve a more clinically relevant effect. Here, we report that a single injection of self-complementary adeno-associated virus serotype 9 expressing green fluorescent protein or of a codon-optimized version of the survival motor neuron protein into the facial vein 1 day after birth in mice carrying a defective survival motor neuron gene led to widespread gene transfer. Furthermore, this gene therapy resulted in a substantial extension of life span in these animals. These data demonstrate a significant increase in survival in a mouse model of spinal muscular atrophy and provide evidence for effective therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.3000830DOI Listing

Publication Analysis

Top Keywords

spinal muscular
16
muscular atrophy
16
survival motor
16
motor neuron
16
gene therapy
12
model spinal
8
neuron gene
8
therapeutic approach
8
gene
7
survival
6

Similar Publications

Objectives: Physical function assessments in patients with spinal muscular atrophy (SMA) are important indicators for assessing the effectiveness of treatment and changes over time in rehabilitation therapy. However, few reports exist on this indicator. This study calculated the minimal clinically important difference (MCID) for assessing motor function in the upper and lower limbs of individuals with SMA to estimate the degree of change within a functional score that is considered clinically meaningful.

View Article and Find Full Text PDF

An abnormal expansion of a GGGGCC (GC) hexanucleotide repeat in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two debilitating neurodegenerative disorders driven in part by gain-of-function mechanisms involving transcribed forms of the repeat expansion. By utilizing a Cas13 variant with reduced collateral effects, we develop here a high-fidelity RNA-targeting CRISPR-based system for C9ORF72-linked ALS/FTD. When delivered to the brain of a transgenic rodent model, this Cas13-based platform curbed the expression of the GC repeat-containing RNA without affecting normal C9ORF72 levels, which in turn decreased the formation of RNA foci, reduced the production of a dipeptide repeat protein, and reversed transcriptional deficits.

View Article and Find Full Text PDF

Background: With the approval of disease-modifying treatments for 5q-spinal muscular atrophy (SMA), there is an increasing need for biomarkers for disease course and therapeutic response monitoring. Radially sampled Averaged Magnetization Inversion Recovery Acquisitions (rAMIRA) MR-imaging enables spinal cord (SC) gray matter (GM) delineation and quantification in vivo. This study aims to assess SC GM atrophy in patients with 5q-SMA and its associations with clinical disability.

View Article and Find Full Text PDF

Spinal cord injury (SCI) causes severe motor and sensory deficits, and there are currently no approved treatments for recovery. Nearly 70% of patients with SCI experience pathological muscle cocontraction and spasticity, accompanied by clinical signs such as patellar hyperreflexia and ankle clonus. The integration of epidural electrical stimulation (EES) of the spinal cord with rehabilitation has substantial potential to improve recovery of motor functions; however, abnormal muscle cocontraction and spasticity may limit the benefit of these interventions and hinder the effectiveness of EES in promoting functional movements.

View Article and Find Full Text PDF

Purpose: the purpose of this study was to evaluate the safety and usability of the ATLAS 2030 in children with Cerebral Palsy (CP) and Spinal Muscular Atrophy (SMA).

Materials And Methods: the sample consisted of six children, three with CP and three with SMA, who received eight sessions of robot-assisted gait therapy. Safety was measured by the presence of adverse events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!