Aldose reductase (AR) is a multifunctional enzyme that catalyzes the reduction of glucose and lipid peroxidation-derived aldehydes. During myocardial ischemia, the activity of AR is increased due to the oxidation of its cysteine residues to sulfenic acids. It is not known, however, whether the activated, sulfenic form of the protein (AR-SOH) is converted back to its reduced, unactivated state (AR-SH). We report here that in perfused mouse hearts activation of AR during 15 min of global ischemia is completely reversed by 30 min of reperfusion. During reperfusion, AR-SOH was converted to a mixed disulfide (AR-SSG). Deactivation of AR and the appearance of AR-SSG during reperfusion were delayed in hearts of mice lacking glutathione S-transferase P (GSTP). In vitro, GSTP accelerated glutathiolation and inactivation of AR-SOH. Reduction of AR-SSG to AR-SH was facilitated by glutaredoxin (GRX). Ischemic activation of AR was increased in GRX-null hearts but was attenuated in the hearts of cardiospecific GRX transgenic mice. Incubation of AR-SSG with GRX led to the regeneration of the reduced form of the enzyme. In ischemic cardiospecific AR transgenic hearts, AR was co-immunoprecipitated with GSTP, whereas in reperfused hearts, the association of AR with GRX was increased. These findings suggest that upon reperfusion of the ischemic heart AR-SOH is converted to AR-SSG via GSTP-assisted glutathiolation. AR-SSG is then reduced by GRX to AR-SH. Sequential catalysis by GSTP and GRX may be a general redox switching mechanism that regulates the reduction of protein sulfenic acids to cysteines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2924019PMC
http://dx.doi.org/10.1074/jbc.M110.146423DOI Listing

Publication Analysis

Top Keywords

sulfenic acids
12
ar-soh converted
12
aldose reductase
8
glutathione s-transferase
8
regeneration reduced
8
hearts
6
ar-ssg
6
grx
6
postischemic deactivation
4
deactivation cardiac
4

Similar Publications

Mechanistic studies of thiol reactivity can be challenging because electrophilic reaction intermediates, such as sulfenic acids (RSOH) and sulfenyl chlorides (RSCl), are generally too reactive to be observed directly. Herein we report the design and synthesis of a sterically-encumbered fluorinated triptycene thiol which enables direct observation of reaction intermediates in aqueous buffer by F NMR, as demonstrated in reactions with hydrogen peroxide and hypochlorous acid. Reactions with HO resulted in the formation of a persistent RSOH species, which was subsequently converted to a sulfinic acid (RSOH) and then a sulfonic acid (RSOH), while RSCl was found to be the intermediate in reactions with HOCl.

View Article and Find Full Text PDF

Disulfide stress and its role in cardiovascular diseases.

Redox Biol

September 2024

Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Department of Human Anatomy and Histoembryology, Xinxiang Medical University, Xinxiang, China. Electronic address:

Cardiovascular disease (CVD) is one of the leading causes of mortality in humans, and oxidative stress plays a pivotal role in disease progression. This phenomenon typically arises from weakening of the cellular antioxidant system or excessive accumulation of peroxides. This review focuses on a specialized form of oxidative stress-disulfide stress-which is triggered by an imbalance in the glutaredoxin and thioredoxin antioxidant systems within the cell, leading to the accumulation of disulfide bonds.

View Article and Find Full Text PDF

-Sulfenylation Driven Antigen Capture Boosted by Radiation for Enhanced Cancer Immunotherapy.

ACS Nano

July 2024

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China.

Radiotherapy (RT)-induced vaccination greatly promotes the development of personalized cancer vaccines owing to the massive release of antigens initiated by tumor-localized RT eliciting the tumor-specific immune response. However, its broad application in cancer treatment is seriously impeded by poor antigen cross-presentation, low response rate, and short duration of efficacy. Herein, the tumor-antigen-capturing nanosystem dAuNPs@CpG consisting of gold nanoparticles, 3,5-cyclohexanedione (CHD), and immunoadjuvant CpG were fabricated to enhance RT-induced vaccination.

View Article and Find Full Text PDF

Volatile sulfur compounds (VSCs) significantly influence food flavor and garner considerable attention in flavor research due to their low sensory thresholds, diverse odor attributes, and high reactivity. Extensive research studies have explored VSC formation through thermal processes such as the Maillard reaction, thermal pyrolysis, oxidation, and enzymatic reactions. However, understanding of the specific reaction mechanisms and processes remains limited.

View Article and Find Full Text PDF

Exploration of glutaredoxin-1 oxidative modification in carbon nanomaterial-induced hepatotoxicity.

Analyst

March 2024

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.

Herein, we present toxicological assessments of carbon nanomaterials in HL-7702 cells, and it was found that reactive oxygen species (ROS) levels were elevated. Mass spectrometry results indicated that cysteine sulfhydryl of glutaredoxin-1 (GLRX1) was oxidized to sulfenic acids and sulfonic acids by excessive ROS, which broke the binding of GLRX1 to apoptosis signal-regulating kinase 1, causing the activation of the JNK/p38 signaling pathway and ultimately hepatocyte apoptosis. However, a lower level of ROS upregulated GLRX1 instead of sulfonation modification of its active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!