Polymeric sensing system molecularly imprinted towards enhanced adhesion of Saccharomyces cerevisiae.

Biosens Bioelectron

Department of Molecular Physics, Faculty of Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland.

Published: September 2010

Surface molecular imprinting of methacrylate polymers (SMIPs) was applied for obtaining sensory system that was able to selectively adsorb Saccharomyces cerevisiae cells. Molecular imprinting with a stamp prepared from particular microorganisms was applied to modify the polymeric surface during polymerisation. Polymer surface was imprinted against two microorganisms of the top-fermenting brewing yeast strains of S. cerevisiae, differing in cell flocculation behavior, in particular showed in cell wall surface proteins. Two yeast strains: K2 and LVB Gaffel from an industrial microorganism collection were used. High selectivity of the microorganism readsorption by the SMIPs was observed. The properties of surfaces of molecularly imprinted polymers were studied with the use of atomic force microscopy (AFM) working in semi-contact and force spectroscopy modes. A strong enhancement of adhesion between microorganisms and imprinted polymeric surface in comparison to non-imprinted surface was observed. This report presents the first quantification of the enhancement of adhesion forces between microorganisms and polymeric surface caused by modification of the surface with use of molecular imprinting technique. The study has proved that SMIP technology and obtained polymeric matrix can recognize microorganisms and selectively separate the cells of yeast strains of S. cerevisiae family.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2010.05.009DOI Listing

Publication Analysis

Top Keywords

molecular imprinting
12
polymeric surface
12
yeast strains
12
molecularly imprinted
8
saccharomyces cerevisiae
8
surface
8
surface molecular
8
strains cerevisiae
8
enhancement adhesion
8
polymeric
5

Similar Publications

A novel strategy for cytochrome c selective recognition assisted with cucurbit[6]uril by host-guest interaction via N-terminal epitope imprinting and reversible addition-fragmentation chain transfer (RAFT) polymerization was developed. N-terminal nonapeptide of cytochrome c (GI-9) was used as the epitope template to achieve highly selective recognition of cytochrome c. As a common supramolecule in recent years, cucurbit[6]uril can encapsulate the butyrammonium group of lysine residue to capture the peptide and improve the corresponding spatial orientation by the host-guest interaction for GI-9 or cytochrome c recognition.

View Article and Find Full Text PDF

Thiol-maleimide click reaction-driven imprinted polymer for chiral resolution of indoprofen.

J Chromatogr A

January 2025

Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt. Electronic address:

Indoprofen (INP) comprises two enantiomers, R- and S-, whose high pharmacological efficacy is realized only in the case of the separated enantiomers. A newly synthesized poly(acrylonitrile-co-divinylbenzene) (PANB)-based sorbent with selective affinity to the S-enantiomer of INP was applied to separate INP racemate. The synthesis was performed by suspension polymerization with low-crosslinked PANB microparticles and by reaction of the inserted nitriles with 1-amino-1H-pyrrole-2,5‑dione (Ma-NH).

View Article and Find Full Text PDF

Genetics of Prader-Willi and Angelman syndromes: 2024 update.

Curr Opin Psychiatry

December 2024

Departments of Psychiatry &, Behavioral Sciences and Pediatrics, University of Kansas Medical Centre, Kansas City, Kansas, United States.

Purpose Of Review: Prader-Willi (PWS) and Angelman (AS) syndromes arise from errors in 15q11-q13 imprinting. This review describes recent advances in genomics and how these expand our understanding of these rare disorders, guiding treatment strategies to improve patient outcomes.

Recent Findings: PWS features include severe infantile hypotonia, failure to thrive, hypogonadism, developmental delay, behavioral and psychiatric features, hyperphagia, and morbid obesity, if unmanaged.

View Article and Find Full Text PDF

Self-powered photoelectrochemical sensor based on molecularly imprinted polymer-coupled CBFO photocathode and AgS/SnS photoanode for ultrasensitive dimethoate sensing.

Anal Chim Acta

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:

Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.

View Article and Find Full Text PDF

Commentary on "Epigenome-wide analysis across the development span of pediatric acute lymphoblastic leukemia: backtracking to birth".

Mol Cancer

January 2025

Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

VTRNA2-1 is a polymorphically imprinted locus. The proportion of individuals with a maternally imprinted VTRNA2-1 locus is consistently approximately 75% in populations of European origin, with the remaining circa 25% having a non-methylated VTRNA2-1 locus. Recently, VTRNA2-1 hypermethylation at birth was suggested to be a precursor of paediatric acute lymphoblastic leukaemia with biomarker potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!