In the present study, chemically prepared activated carbon derived from Borassus aethiopum flower was used as adsorbent. Batch adsorption studies were performed for the removal of Malachite Green (MG) from aqueous solutions by varying the parameters like initial solution pH, adsorbent dosage, initial MG concentration and temperature with three different particle sizes such as 100 microm, 600 microm and 1000 microm. The zero point charge was 2.5 and the maximum adsorption occurred at the pH range from 6.0 to 8.0. Experimental data were analyzed by model equations such as Langmuir, Freundlich and Temkin isotherms and it was found that the Langmuir isotherm model best fitted the adsorption data. Thermodynamic parameters such as DeltaG, DeltaH and DeltaS were also calculated for the adsorption processes. Adsorption rate constants were determined using pseudo first-order, pseudo second-order rate equations and also Elovich model and intraparticle diffusion models. The results clearly showed that the adsorption of MG onto PFAC followed pseudo second-order model and the adsorption was both by film diffusion and by intraparticle diffusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2010.05.008 | DOI Listing |
Langmuir
January 2025
Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, Bremen 28359, Germany.
Chloroethenes (CHCl with = 1, 2, 3, 4) are produced and consumed in various industrial processes. As the release of these compounds into air, water, and soils can pose significant risks to human health and the environment, different techniques have been exploited to prevent or remediate chloroethene pollution. Although several previous experimental and computational studies investigated the removal of chloroethenes using zeolite adsorbents, their structural diversity in terms of pore size and pore topology has hardly been explored so far.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Advanced Research Institute Chinese Academy of Sciences: Chinese Academy of Sciences Shanghai Advanced Research Institute, Low-Carbon Conversion Science and Engineering Cente, 100 Haike Road, 201203, Shanghai, CHINA.
Renewable energy-driven electrochemical CO2 reduction has emerged as a promising technology for a sustainable future. However, achieving efficient production of storable liquid fuels at ampere-level current densities remains a significant hurdle in the large-scale implementation of CO2 electroreduction. Here we report a novel catalytic electrode comprising chlorine-doped SnO2 nanoflowers arrayed on the exterior of three-dimensional nickel hollow fibers.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
An investigation into the degradation of ciprofloxacin (CIP) under visible light was carried out using an efficient photocatalyst, i.e., CoFeO@3D-TiO@GA, synthesized by doping CoFeO@three-dimensional-TiO into a hierarchical porous graphene aerogel.
View Article and Find Full Text PDFJ Mol Model
January 2025
School of Chemistry & Chemical Engineering, Linyi University, Linyi, 276000, China.
Context: In this work, a comparative study on the catalytic conversion of 5-hydroxymethyl furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) on precious Pd(111) and nonprecious Cu(111) was systematically performed. On the basis of the calculated activation energy (E) and reaction energy (E), the optimal energy path for the hydrogenation of HMF (F-CHO) into BHMF (F-CHOH) on Pd(111) is as follows: F-CHO + 2H → F-CHOH + H → F-CHOH; the minimum reaction path on Cu(111) is F-CHO + 2H → F-CHO + H → F-CHOH. On Cu(111), the formation of F-CHOH from F-CHO hydrogenation is the rate-determining step because it has the highest reaction energy barrier and the smallest rate constant.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.
Perpendicular nanochannel creation of two-dimensional (2D) nanostructures requires highly controlled anisotropic drilling processes of the entire structure via void formation. However, chemical approaches for the creation of porosity and defects of 2D nanostructures have been challenging due to the strong basal plane chemical stability and the use of harsh reactants, tending to give randomly corroded 2D structures. In this study, we introduce Lewis acid-base conjugates (LABCs) as molecular drillers with attenuated chemical reactivity which results in the well-defined perpendicular nanochannel formation of 2D TiS nanoplates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!