Cell culture-based production methods may assist in meeting increasing demand for seasonal influenza vaccines and developing production flexibility required for addressing influenza pandemics. MDCK-33016PF cells are used in propagation of a cell-based seasonal influenza vaccine (Optaflu); but, like most continuous cell lines, can grow in immunocompromised mice to produce tumors. It is, therefore, essential that no residual cells remain within the vaccine, that cell lysates or DNA are not oncogenic, and that the cell substrate does not contain oncogenic viruses or oncogenic DNA. Multiple, redundant processes ensure the safety of influenza vaccines produced in MDCK-33016PF cells. The probability of a residual cell being present in a dose of vaccine is approximately 1 in 10(34). Residual MDCK-DNA is < or =10 ng per dose and the ss-propiolactone used to inactivate influenza virus results in reduction of detectable DNA to less than 200 base pairs (bp). Degenerate PCR and specific PCR confirm exclusion of oncogenic viruses. The manufacturing process has been validated for its capacity to remove and inactivate viruses. We conclude that the theoretical risks arising from manufacturing seasonal influenza vaccine using MDCK-33016PF cells are reduced to levels that are effectively zero by the multiple, orthogonal processes used during production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7129197 | PMC |
http://dx.doi.org/10.1016/j.biologicals.2010.04.003 | DOI Listing |
Sci Immunol
January 2025
Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA.
Understanding the naïve B cell repertoire and its specificity for potential zoonotic threats, such as the highly pathogenic avian influenza (HPAI) H5Nx viruses, may allow prediction of infection- or vaccine-specific responses. However, this naïve repertoire and the possibility to respond to emerging, prepandemic viruses are largely undetermined. Here, we profiled naïve B cell reactivity against a prototypical HPAI H5 hemagglutinin (HA), the major target of antibody responses.
View Article and Find Full Text PDFClin Pharmacol Ther
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, South Korea.
Immunization rates of maternal influenza vaccination during pregnancy remain suboptimal, with concerns about potential harm to the mothers and their offspring. We conducted a population-based cohort study, using mother-child linked database in Korea: (a) maternal cohort between December 2019, and March 2022; (b) neonatal cohort between September 2020, and June 2021. Exposure was defined as influenza vaccination during pregnancy.
View Article and Find Full Text PDFmSphere
January 2025
Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
In 2020, I featured two articles in the "mSphere of Influence" commentary series that had profound implications for the field of immunology and helped shape my research perspective. These articles were "Global Analyses of Human Immune Variation Reveal Baseline Predictors of Postvaccination Responses" by Tsang et al. (Cell 157:499-513, 2014, https://doi.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Department of Comparative Pathobiology, Purdue Institute of Inflammation, Immunology and Infectious Disease, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA.
An effective universal influenza vaccine is urgently needed to overcome the limitations of current seasonal influenza vaccines, which are ineffective against mismatched strains and unable to protect against pandemic influenza. In this study, bovine and human adenoviral vector-based vaccine platforms were utilized to express various combinations of antigens. These included the H5N1 hemagglutinin (HA) stem region or HA2, the extracellular domain of matrix protein 2 of influenza A virus, HA signal peptide (SP), trimerization domain, excretory peptide, and the autophagy-inducing peptide C5 (AIP-C5).
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
Background: The Influenza A virus (IAV), a pathogen affecting the respiratory system, represents a major risk to public health worldwide. Immunization remains the foremost strategy to control the transmission of IAV. The virus has two primary antigens: hemagglutinin (HA) and neuraminidase (NA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!