A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimensional porous scaffolds for vascular tissue engineering. | LitMetric

Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimensional porous scaffolds for vascular tissue engineering.

J Biomater Sci Polym Ed

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.

Published: March 2011

In this study, a series of 3-D interconnected porous scaffolds with various pore diameters and porosities was fabricated by freeze-drying with non-toxic biodegradable waterborne polyurethane (WBPU) emulsions of different concentration. The structures of these porous scaffolds were characterized by scanning electron microscopy (SEM), and the pore diameters were calculated using CIAS 3.0 software. The pores obtained were 3-D interconnected in the scaffolds. The scaffolds obtained at different pre-freeze temperatures showed a pore diameter ranging from 2.8 to 99.9 microm with a pre-freezing temperature of -60 degrees C and from 13.1 to 229.1 microm with a pre-freezing temperature of -25 degrees C. The scaffolds fabricated with WBPU emulsions of different concentration at the same pre-freezing temperature (-25 degrees C) had pores with mean pore diameter between 90.8 and 39.6 microm and porosity between 92.0 and 80.0%, depending on the emulsion concentration. The effect of porous structure of the scaffolds on adhesion and proliferation of human umbilical vein endothelial cells (HUVECs) cultured in vitro was evaluated using the MTT assay and environmental scanning electron microscopy (ESEM). It was found that the better adhesion and proliferation of HUVECs on 3-D scaffolds of WBPU with relative smaller pore diameter and lower porosity than those on scaffolds with larger pore and higher porosity and film. Our work suggests that fabricating a scaffold with controllable pore diameter and porosity could be a good method to be used in tissue-engineering applications to obtain carriers for cell culture in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1163/092050609X12525750021270DOI Listing

Publication Analysis

Top Keywords

pore diameter
16
porous scaffolds
12
pre-freezing temperature
12
scaffolds
9
3-d interconnected
8
pore diameters
8
wbpu emulsions
8
emulsions concentration
8
scanning electron
8
electron microscopy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!