Although spinal injury is a major cause of chronic disability, the mechanisms responsible for the lesion pathophysiology and their dynamic evolution remain poorly understood. Hence, current treatments aimed at blocking damage extension are unsatisfactory. To unravel the acute spinal injury processes, we have developed a model of the neonatal rat spinal cord in vitro subjected to kainate-evoked excitotoxicity or metabolic perturbation (hypoxia, aglycemia, and free oxygen radicals) or their combination. The study outcome is fictive locomotion one day after the lesion and its relation to histological damage. Excitotoxicity always suppresses locomotor network activity and produces large gray matter damage, while network bursting persists supported by average survival of nearly half premotoneurons and motoneurons. Conversely, metabolic perturbation simply depresses locomotor network activity as damage mainly concerns white rather than gray matter. Coapplication of kainate and metabolic perturbation completely eliminates locomotor network activity. These results indicate distinct cellular targets for excitotoxic versus dysmetabolic damage with differential consequences on locomotor pattern formation. Furthermore, these data enable to estimate the minimal network membership compatible with expression of locomotor activity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2009.05427.xDOI Listing

Publication Analysis

Top Keywords

metabolic perturbation
12
locomotor network
12
network activity
12
spinal injury
8
gray matter
8
damage
5
locomotor
5
network
5
deconstructing locomotor
4
locomotor networks
4

Similar Publications

PepGAT, a chitinase-derived peptide, alters the proteomic profile of colorectal cancer cells and perturbs pathways involved in cancer survival.

Int J Biol Macromol

January 2025

Laboratory of Bioinformatics Applied to Health, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil. Electronic address:

Colorectal cancer (CRC) affects the population worldwide, occupying the first place in terms of death and incidence. Synthetic peptides (SPs) emerged as alternative molecules due to their activity and low toxicity. Proteomic analysis of PepGAT-treated HCT-116 cells revealed a decreased abundance of proteins involved in ROS metabolism and energetic metabolisms, cell cycle, DNA repair, migration, invasion, cancer aggressiveness, and proteins involved in resistance to 5-FU.

View Article and Find Full Text PDF

Persistence of long-term hyperglycemia results in the glyco-oxidation of plasma proteins, which is considered to be a significant factor in metabolic dysfunction, linking hyperglycemia to the emergence of vascular complications. Methylglyoxal (MGO), a dicarbonyl species formed excessively under diabetes, elevates the oxidative stress, enhancing the generation of superoxide anion, which ultimately reacts with nitric oxide (NO•) to form peroxynitrite (PON). PON, being a powerful nitro-oxidizing agent distorts protein structure, hampering its function.

View Article and Find Full Text PDF

ANKRD11 binding to cohesin suggests a connection between KBG syndrome and Cornelia de Lange syndrome.

Proc Natl Acad Sci U S A

January 2025

Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.

Ankyrin Repeat Domain-containing Protein 11 () is a causative gene for KBG syndrome, a significant risk factor for Cornelia de Lange syndrome (CdLS), and a highly confident autism spectrum disorder gene. Mutations of lead to developmental abnormalities in multiple organs/tissues including the brain, craniofacial and skeletal bones, and tooth structures with unknown mechanism(s). Here, we find that ANKRD11, via a short peptide fragment in its N-terminal region, binds to the cohesin complex with a high affinity, implicating why mutation can cause CdLS.

View Article and Find Full Text PDF

Attenuating hyperammonemia preserves protein synthesis and muscle mass via restoration of perturbed metabolic pathways in bile duct-ligated rats.

Metab Brain Dis

January 2025

Hepato-Neuro Laboratory, Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900, Rue Saint-Denis - Pavillon R, R08.422, Montréal (Québec), H2X 0A9, Canada.

Sarcopenia and hepatic encephalopathy (HE) are complications of chronic liver disease (CLD), which negatively impact clinical outcomes. Hyperammonemia is considered to be the central component in the pathogenesis of HE, however ammonia's toxic effects have also been shown to impinge on extracerebral organs including the muscle. Our aim was to investigate the effect of attenuating hyperammonemia with ornithine phenylacetate (OP) on muscle mass loss and associated molecular mechanisms in rats with CLD.

View Article and Find Full Text PDF

Unlabelled: Insulin resistance is major factor in the development of metabolic syndrome and type 2 diabetes (T2D). We extracted 430 genes from literature associated with both insulin resistance and inflammation. The highly significant pathways were Toll-like receptor signaling, PI3K-Akt signaling, cytokine-cytokine receptor interaction, pathways in cancer, TNF signaling, and NF-kappa B signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!