In the present work, we report on the synthesis of cellulose cotton fibers covalently linked to diclofenac moieties and the evaluation of the anti-inflammatory activity of this new biomaterial. In spite of recent progress in experimental and clinical medicine, the problem of chronic wounds treatment is still debated. In fact, conventional methods are based on the use of ointment-soaked bandages, but several physical and biological factors contribute to making the efficacy of this method quite low. For this reason, we developed the idea to using modified cotton gauzes to prevent inflammation during wound healing. In this light, diclofenac, a nonsteroidal anti-inflammatory drug, was covalently linked to the cellulose backbone of hydrophilic cotton fibers by a heterogeneous synthesis to produce a functionalized biopolymer with a satisfactory degree of substitution and anti-inflammatory activity. Diclofenac was directly linked to fiber microfibril hydroxylic groups using THF with thionyl chloride. The obtained biopolymer was characterized by infrared spectroscopy (FT-IR) to confirm ester linkages. Finally, the anti-inflammatory activity was evaluated in a well-established in vivo model. The results suggested that these biomaterials possess an excellent anti-inflammatory activity in vivo, so they can be efficiently employed in biomedical fields for chronic wound management to ensure a valid protection against inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm100404qDOI Listing

Publication Analysis

Top Keywords

anti-inflammatory activity
20
cotton fibers
12
covalently linked
8
anti-inflammatory
6
activity
5
synthesis characterization
4
characterization anti-inflammatory
4
activity diclofenac-bound
4
cotton
4
diclofenac-bound cotton
4

Similar Publications

Protein citrullination modification plays a pivotal role in the pathogenesis of rheumatoid arthritis (RA), and anti-citrullinated protein antibodies (ACPAs) are extensively employed for clinical diagnosis of RA. However, there remains limited understanding regarding specific citrullinated proteins and their implications in the progression of RA. In this study, we screen and verify insulin-like growth factor-2 mRNA binding protein 1 (IGF2BP1) as a novel citrullinated protein with significantly elevated citrullinated level in RA.

View Article and Find Full Text PDF

Inhibition of Melanin Synthesis and Inflammation by Exosomes Derived from DB-14 Isolated from Flower.

J Microbiol Biotechnol

January 2025

Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea.

is a lactic acid bacteria found in fermented products. In our previous study, was isolated from flowers, and its acid tolerance and antibacterial properties were thoroughly investigated. This study focuses on the inhibition of melanin synthesis and inflammation of exosomes derived from .

View Article and Find Full Text PDF

This study aimed to develop patches containing quercetin-loaded microcapsules and to evaluate their in vitro and in vivo safety and efficacy in preclinical surveys. A set of in vitro experiments evidenced the virucidal activity of quercetin against the HSV-1-KOS (sensitive to acyclovir) and HSV-1-AR (resistant to acyclovir) strains, with improved outcomes upon the first. The patches presented a homogeneous aspect, were easily handled, had a suitable bioadhesion, and possessed mechanical properties of soft and weak material, besides a pH compatible with human skin.

View Article and Find Full Text PDF

Alpha-1 antitrypsin (AAT) deficiency (AATD) is a monogenic disease caused by misfolding of AAT variants resulting in gain-of-toxic aggregation in the liver and loss of monomer activity in the lung leading to chronic obstructive pulmonary disease (COPD). Using high-throughput screening, we discovered a bioactive natural product, phenethyl isothiocyanate (PEITC), highly enriched in cruciferous vegetables, including watercress and broccoli, which improves the level of monomer secretion and neutrophil elastase (NE) inhibitory activity of AAT-Z through the endoplasmic reticulum (ER) redox sensor protein disulfide isomerase (PDI) A4 (PDIA4). The intracellular polymer burden of AAT-Z can be managed by combination treatment of PEITC and an autophagy activator.

View Article and Find Full Text PDF

Clostridioides difficile, a spore-forming anaerobic bacterium, is the primary cause of hospital antibiotic-associated diarrhea. Key virulence factors, toxins A (TcdA) and B (TcdB), significantly contribute to C. difficile infection (CDI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!