A liposomal preparation of glutathione (GSH) was investigated for its ability to replenish intracellular GSH and provide neuroprotection in an in vitro model of Parkinson's disease using paraquat plus maneb (PQMB) in rat mesencephalic cultures. In mixed neuronal/glial cultures depleted of intracellular GSH, repletion to control levels occurred over 4 h with liposomal-GSH or non-liposomal-GSH however, liposomal-GSH was 100-fold more potent; EC(50s) 4.75 μM and 533 μM for liposomal and non-liposomal-GSH, respectively. Liposomal-GSH utilization was also observed in neuronal cultures, but with a higher EC(50) (76.5 μM), suggesting that glia facilitate utilization. Blocking γ-glutamylcysteine synthetase with buthionine sulfoxamine prevented replenishment with liposomal-GSH demonstrating the requirement for catabolism and resynthesis. Repletion was significantly attenuated with endosomal inhibition implicating the endosomal system in utilization. Liposomal-GSH provided dose-dependent protection against PQMB with an EC(50) similar to that found for repletion. PQMB depleted intracellular GSH by 50%. Liposomal-GSH spared endogenous GSH during PQMB exposure, but did not require GSH biosynthesis for protection. No toxicity was observed with the liposomal preparation at 200-fold the EC(50) for repletion. These findings indicate that glutathione supplied in a liposomal formulation holds promise as a potential therapeutic for neuronal maintenance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-010-0217-0 | DOI Listing |
Curr Issues Mol Biol
December 2024
Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy.
Cancer cells demonstrate remarkable resilience by adapting to oxidative stress and undergoing metabolic reprogramming, making oxidative stress a critical target for cancer therapy. This study explores, for the first time, the redox-dependent anticancer effects of Polydatin (PD), a glucoside derivative of resveratrol, on the human Osteosarcoma (OS) cells SAOS-2 and U2OS. Using cell-based biochemical assays, we found that cytotoxic doses of PD (100-200 µM) promote ROS production, deplete glutathione (GSH), and elevate levels of both total iron and intracellular malondialdehyde (MDA), which are key markers of ferroptosis.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.
Increasing evidence has demonstrated that oxidative stress impairs oocyte maturation and embryonic development. Conventionally, antioxidants have been applied systems to improve oocyte maturation and blastocyst rates. Formononetin (FMN) is a flavonoid that has been shown to have various pharmacological effects, including antioxidants.
View Article and Find Full Text PDFMater Today Bio
February 2025
College of Basic Medical Sciences, The Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
The use of combination therapies that employ a variety of cell death mechanisms has emerged as a promising avenue of research in the treatment of cancer. However, the optimization of therapeutic synergies when integrating different modes remains a significant challenge. To this end, we developed a multifunctional intelligent drug-carrying nanoparticle (DFMTCH NPs) based on the metal-organic framework MIL-100, loaded with doxorubicin (DOX) and disulfiram (DSF), coated with a Cu-tannic acid (Cu-TA) network and hyaluronic acid (HA), for the purpose of combined chemotherapy/chemodynamic/photothermal anti-cancer therapy.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland. Electronic address:
Background: The human gut microbiota plays a crucial role in various aspects of health, extending beyond digestion and nutrient absorption. Ganoderma lucidum (Reishi) and Hericium erinaceus (Lion's Mane), traditional medicinal mushrooms, have garnered interest due to their potential to exert positive health effects. The aim of our study was to investigate the molecular impact of Reishi and Lion's Mane on mood regulation through the gut-brain axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!