Food intake is regulated by signals from peripheral organs, but the way these are integrated remains uncertain. Cholecystokinin (CCK) from the intestine and leptin from adipocytes interact to inhibit food intake. Our aim was to examine the hypothesis that these interactions occur at the level of vagal afferent neurons via control of the immediate early gene EGR1. We now report that CCK stimulates redistribution to the nucleus of early growth response factor-1 (EGR1) in these neurons in vivo and in culture, and these effects are not dependent on EGR1 synthesis. Leptin stimulates EGR1 expression; leptin alone does not stimulate nuclear translocation, but it strongly potentiates the action of CCK. Ghrelin inhibits CCK-stimulated nuclear translocation of EGR1 and leptin-stimulated EGR1 expression. Expression of the gene encoding the satiety peptide cocaine- and amphetamine-regulated transcript (CARTp) is stimulated by CCK via an EGR1-dependent mechanism, and this is strongly potentiated by leptin. Leptin potentiated inhibition of food intake by endogenous CCK in the rat in conditions reflecting changes in EGR1 activation. The data indicate that by separately regulating EGR1 activation and synthesis, CCK and leptin interact cooperatively to define the capacity for satiety signaling by vagal afferent neurons; manipulation of these interactions may be therapeutically beneficial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940532PMC
http://dx.doi.org/10.1210/en.2010-0106DOI Listing

Publication Analysis

Top Keywords

vagal afferent
12
afferent neurons
12
food intake
12
egr1
9
egr1 expression
8
nuclear translocation
8
egr1 activation
8
leptin
7
cck
6
egr1 target
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!