Glucocorticoids are the most widely used antiinflammatory drugs in the world. However, prolonged use of glucocorticoids results in undesirable side effects such as muscle wasting, osteoporosis, and diabetes. Skeletal muscle wasting, which currently has no approved therapy, is a debilitating condition resulting from either reduced muscle protein synthesis or increased degradation. The imbalance in protein synthesis could occur from increased expression and function of muscle-specific ubiquitin ligases, muscle atrophy F-box (MAFbx)/atrogin-1 and muscle ring finger 1 (MuRF1), or decreased function of the IGF-I and phosphatidylinositol-3 kinase/Akt kinase pathways. We examined the effects of a nonsteroidal tissue selective androgen receptor modulator (SARM) and testosterone on glucocorticoid-induced muscle atrophy and castration-induced muscle atrophy. The SARM and testosterone propionate blocked the dexamethasone-induced dephosphorylation of Akt and other proteins involved in protein synthesis, including Forkhead box O (FoxO). Dexamethasone caused a significant up-regulation in the expression of ubiquitin ligases, but testosterone propionate and SARM administration blocked this effect by phosphorylating FoxO. Castration induced rapid myopathy of the levator ani muscle, accompanied by up-regulation of MAFbx and MuRF1 and down-regulation of IGF-I, all of which was attenuated by a SARM. The results suggest that levator ani atrophy caused by hypogonadism may be the result of loss of IGF-I stimulation, whereas that caused by glucocorticoid treatment relies almost solely on up-regulation of MAFbx and MuRF1. Our studies provide the first evidence that glucocorticoid- and hypogonadism-induced muscle atrophy are mediated by distinct but overlapping mechanisms and that SARMs may provide a more effective and selective pharmacological approach to prevent glucocorticoid-induced muscle loss than steroidal androgen therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2010-0150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!