Population robustness arising from cellular heterogeneity.

Proc Natl Acad Sci U S A

Centre for Cell Imaging, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom.

Published: June 2010

AI Article Synopsis

Article Abstract

Heterogeneity between individual cells is a common feature of dynamic cellular processes, including signaling, transcription, and cell fate; yet the overall tissue level physiological phenotype needs to be carefully controlled to avoid fluctuations. Here we show that in the NF-kappaB signaling system, the precise timing of a dual-delayed negative feedback motif [involving stochastic transcription of inhibitor kappaB (IkappaB)-alpha and -epsilon] is optimized to induce heterogeneous timing of NF-kappaB oscillations between individual cells. We suggest that this dual-delayed negative feedback motif enables NF-kappaB signaling to generate robust single cell oscillations by reducing sensitivity to key parameter perturbations. Simultaneously, enhanced cell heterogeneity may represent a mechanism that controls the overall coordination and stability of cell population responses by decreasing temporal fluctuations of paracrine signaling. It has often been thought that dynamic biological systems may have evolved to maximize robustness through cell-to-cell coordination and homogeneity. Our analyses suggest in contrast, that this cellular variation might be advantageous and subject to evolutionary selection. Alternative types of therapy could perhaps be designed to modulate this cellular heterogeneity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895068PMC
http://dx.doi.org/10.1073/pnas.0913798107DOI Listing

Publication Analysis

Top Keywords

cellular heterogeneity
8
individual cells
8
nf-kappab signaling
8
dual-delayed negative
8
negative feedback
8
feedback motif
8
population robustness
4
robustness arising
4
cellular
4
arising cellular
4

Similar Publications

Heterogeneity in Fluorescence-Stained Sperm Membrane Patterns and Their Dynamic Changes Towards Fertilization in Mice.

Front Biosci (Landmark Ed)

January 2025

Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.

Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.

View Article and Find Full Text PDF

The Formation and Features of Massive Vacuole Induced by Nutrient Deficiency in Human Embryonic Kidney Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.

Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.

Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.

View Article and Find Full Text PDF

Spatial and Temporal Variability Management for All Farmers: A Cell-Size Approach to Enhance Coffee Yields and Optimize Inputs.

Plants (Basel)

January 2025

Laboratory of Precision Agriculture (LAP), Department of Biosystems Engineering, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil.

Coffee yield exhibits plant-level variability; however, due to operational issues, especially in smaller operations, the scouting and management of coffee yields are often hindered. Thus, a cell-size approach at the field level is proposed as a simple and efficient solution to overcome these constraints. This study aimed to present the feasibility of a cell-size approach to characterize spatio-temporal coffee production based on soil and plant attributes and yield (biennial effects) and to assess strategies for enhanced soil fertilization recommendations and economic results.

View Article and Find Full Text PDF

Celiac Disease: A Transitional Point of View.

Nutrients

January 2025

Clinical Immunology Outpatient Clinic, Division of Internal Medicine, Department of Advanced Medical and Surgical Sciences, "Luigi Vanvitelli" University of Campania, 80131 Naples, Italy.

Celiac disease (CeD) is a chronic, lifelong, multifactorial, polygenic, and autoimmune disorder, characteristically triggered by exposure to the exogenous factor "gluten" in genetically predisposed individuals, with resulting duodenal inflammation and enteropathy, as well as heterogeneous multisystemic and extraintestinal manifestations. The immunopathogenesis of CeD is complex, favored by a peculiar human leukocyte antigen (HLA) genetic predisposition, leading to gluten presentation by antigen-presenting cells to CD4+ T helper (Th) cells, T cell-B cell interactions, and production of specific antibodies, resulting in the immune-mediated killing of enterocytes and, macroscopically, in duodenal inflammation. Here, the most relevant correlations between cellular and molecular aspects and clinical manifestations of this complex disease are reviewed, with final considerations on nutritional aspects for disease management.

View Article and Find Full Text PDF

Recent developments in single-cell multi-omics technologies have provided the ability to identify diverse cell types and decipher key components of the tumor microenvironment (TME), leading to important advancements toward a much deeper understanding of how tumor microenvironment heterogeneity contributes to cancer progression and therapeutic resistance. These technologies are able to integrate data from molecular genomic, transcriptomic, proteomics, and metabolomics studies of cells at a single-cell resolution scale that give rise to the full cellular and molecular complexity in the TME. Understanding the complex and sometimes reciprocal relationships among cancer cells, CAFs, immune cells, and ECs has led to novel insights into their immense heterogeneity in functions, which can have important consequences on tumor behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!