Regulation of endosomal trafficking by Rab GTPases depends on selective interactions with multivalent effectors, including EEA1 and Rabenosyn-5, which facilitate endosome tethering, sorting, and fusion. Both EEA1 and Rabenosyn-5 contain a distinctive N-terminal C(2)H(2) zinc finger that binds Rab5. How these C(2)H(2) zinc fingers recognize Rab GTPases remains unknown. Here, we report the crystal structure of Rab5A in complex with the EEA1 C(2)H(2) zinc finger. The binding interface involves all elements of the zinc finger as well as a short N-terminal extension but is restricted to the switch and interswitch regions of Rab5. High selectivity for Rab5 and, to a lesser extent Rab22, is observed in quantitative profiles of binding to Rab family GTPases. Although critical determinants are identified in both switch regions, Rab4-to-Rab5 conversion-of-specificity mutants reveal an essential requirement for additional substitutions in the proximal protein core that are predicted to indirectly influence recognition through affects on the structure and conformational stability of the switch regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2890723 | PMC |
http://dx.doi.org/10.1073/pnas.1000843107 | DOI Listing |
Plant Signal Behav
December 2025
Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
Various metabolic and cell signaling processes impact the functions of sugarcane plant cells. MicroRNAs (miRNAs) play critical regulatory roles in enhancing yield and providing protection against various stressors. This study seeks to identify and partially characterize several novel miRNAs in sugarcane using tools, while also offering a preliminary assessment of their functions.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biochemistry, Indian Institute of Science, Bangalore 560012, INDIA. Electronic address:
The zinc finger transcription factor Mxr1 (methanol expression regulator 1) of the methylotrophic yeast Komagataella phaffii (formerly Pichia pastoris) harbors a DNA-binding domain (DBD) consisting of two CH zinc fingers (Mxr1ZF) between amino acids 36-101 and a previously identified nine amino acid transactivation domain (9aaTAD) between residues 365-373 (TAD A, QELESSLNA). Beyond this, 21 putative 9aaTADs (designated TAD B-V) located between amino acids 401-1155 remain to be characterized. Here, we demonstrate that a compact synthetic transcription factor composed of Mxr1ZF and three tandem copies of TAD A can activate the transcription of Mxr1 target genes for ethanol and methanol metabolism with specificity and efficiency comparable to the full-length protein.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
Dysregulated specificity proteins (SPs), members of the C2H2 zinc-finger family, are crucial transcription factors (TFs) with implications for renal physiology and diseases. This comprehensive review focuses on the role of SP family members, particularly SP1 and SP3, in renal physiology and pathology. A detailed analysis of their expression and cellular localization in the healthy human kidney is presented, highlighting their involvement in fatty acid metabolism, electrolyte regulation, and the synthesis of important molecules.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China. Electronic address:
Armillaria gallica (A. gallica) is a fungus with both medicinal and edible properties. Previous transcriptome analysis has identified the C2H2-type zinc finger transcription factor as a candidate gene involved in the NAA-induced growth promotion of A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!