Polymeric nanofibers fabricated via electrospinning are regarded as promising scaffolds for biomimicking a native extracellular matrix. However, electrospun scaffolds have poor porosity, resulting in cells being unable to infiltrate into the scaffolds but grow only on its surface. In this study, we modified regular electrospinning into rotating multichannel electrospinning (RM-ELSP) to produce microparticles and nanofibers simultaneously. Gelatin nanofibers (0.1-1 microm) and polycaprolactone (PCL) microparticles (0.5-10 microm) were formed and well-mixed. Adjusting the concentration of PCL and/or gelatin, we can fabricate various microparticles/nanofibers composites with different sizes of PCL particles and different diameters of gelatin nanofibers depending on their concentrations (2-10%) during electrospinning. Using PCL particles as a pore generator, we obtained gelatin nanofiber scaffolds with controllable pore size and porosity. Cells adhere and grow into the scaffold easily during in vitro cell culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1163/092050609X12519805625997 | DOI Listing |
To investigate the influence of cations on the microstructural characteristics of electrochemical reinforcement in soft clay, a study was conducted using three different cationic salt solutions-NaCl, CaCl₂, and FeCl₃-for grouting treatment. Four sets of indoor experiments were performed to examine the reinforcement mechanism of the electrochemical method. The findings indicate that increasing the valence of injected cations significantly affects the electrochemical reinforcement effect and the soil's microstructural properties.
View Article and Find Full Text PDFJ Food Sci
December 2024
Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
Microstructural properties of wheat-based food materials change during baking. These alterations affect the final product's mechanical properties, physical attributes, and consumer satisfaction. Image processing and pore network modeling were used to analyze the variations in a cookie's microstructural properties during baking.
View Article and Find Full Text PDFSci Rep
December 2024
School of Resources & Safety Engineering, Central South University, Changsha, 410083, Hunan, China.
To explore the mechanism of water inrush from the mine roof strata, a series of seepage-acoustic emission (SAE) experiments on red sandstone disc samples were carried out. The effects of the height to diameter ratio (H/D) and pore pressure on the mechanical, hydraulic and crack propagation properties of red sandstones were investigated. Test results show that, the peak load of rock samples declines with the decreasing H/D and increasing pore pressure.
View Article and Find Full Text PDFSci Rep
December 2024
Corrosion and Surface Engineering CSIR, National Metallurgical Laboratory, Jamshedpur, India.
Chloride-induced corrosion of steel rebars embedded in mortar was effectively controlled by blending of gallic acid in wet mixture. Mixing of optimized concentration of gallic acid (GA) inhibitor (0.125%) in mortars considerably increased the charge transfer resistance of embedded rebars (80.
View Article and Find Full Text PDFMol Cell
December 2024
Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:
Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!