Background: Over the last decade safety concerns have arisen about the use of metal-based nanoparticles in the cosmetics field. Metal-based nanoparticles have been linked to both environmental and animal toxicity in a variety of studies. Perhaps the greatest concern involves the large amounts of TiO2 nanoparticles that are used in commercial sunscreens. As an alternative to using these potentially hazardous metal-based nanoparticles, we have isolated organic nanoparticles from English ivy (Hedera helix). In this study, ivy nanoparticles were evaluated for their potential use in sunscreens based on four criteria: 1) ability to absorb and scatter ultraviolet light, 2) toxicity to mammalian cells, 3) biodegradability, and 4) potential for diffusion through skin.
Results: Purified ivy nanoparticles were first tested for their UV protective effects using a standard spectrophotometric assay. Next the cell toxicity of the ivy nanoparticles was compared to TiO2 nanoparticles using HeLa cells. The biodegradability of these nanoparticles was also determined through several digestion techniques. Finally, a mathematical model was developed to determine the potential for ivy nanoparticles to penetrate through human skin. The results indicated that the ivy nanoparticles were more efficient in blocking UV light, less toxic to mammalian cells, easily biodegradable, and had a limited potential to penetrate through human skin. When compared to TiO2 nanoparticles, the ivy nanoparticles showed decreased cell toxicity, and were easily degradable, indicating that they provided a safer alternative to these nanoparticles.
Conclusions: With the data collected from this study, we have demonstrated the great potential of ivy nanoparticles as a sunscreen protective agent, and their increased safety over commonly used metal oxide nanoparticles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2893082 | PMC |
http://dx.doi.org/10.1186/1477-3155-8-12 | DOI Listing |
J Phys Chem C Nanomater Interfaces
February 2022
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
The assembled state of nanoparticles (NPs) within porous matrices plays a governing role in directing their biological, electronic, and catalytic properties. However, the effects of the spatial confinement and environmental factors, such as salinity, on the NP assemblies within the pores are poorly understood. In this study, we use adsorption isotherms, spectrophotometry, and small-angle neutron scattering to develop a better understanding of the effect of spatial confinement on the assembled state and catalytic performance of gold (Au) NPs in propylamine-functionalized SBA-15 and MCM-41 mesoporous silica materials (SiO).
View Article and Find Full Text PDFNat Commun
February 2021
Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
Most of the aerial organs of vascular plants are covered by a protective layer known as the cuticle, the main purpose of which is to limit transpirational water loss. Cuticles consist of an amphiphilic polyester matrix, polar polysaccharides that extend from the underlying epidermal cell wall and become less prominent towards the exterior, and hydrophobic waxes that dominate the surface. Here we report that the polarity gradient caused by this architecture renders the transport of water through astomatous olive and ivy leaf cuticles directional and that the permeation is regulated by the hydration level of the cutin-rich outer cuticular layer.
View Article and Find Full Text PDFPharmaceutics
January 2020
Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA.
Alternative routes of administration are one approach that could be used to bypass the blood-brain barrier (BBB) for effective drug delivery to the central nervous system (CNS). Here, we focused on intranasal delivery of polymer nanoparticles. We hypothesized that surface modification of poly(lactic--glycolic acid) (PLGA) nanoparticles with rabies virus glycoprotein (RVG29) would increase residence time and exposure of encapsulated payload to the CNS compared to non-targeted nanoparticles.
View Article and Find Full Text PDFSmall
March 2020
Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
Boston ivy (Parthenocissus tricuspidata) climbs brick walls using its tendril disks, which excrete a sticky substance to perform binding and attachment. While the cellular structures and adhesive substances involved have been identified for decades, their practical applicability as an adhesive has not yet been demonstrated. A Boston ivy disk-inspired adhesive film patch system is reported in which structural and compositional features of the Boston ivy disk are mimicked with a form of thin adhesive film patches.
View Article and Find Full Text PDFMed Phys
December 2019
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
Purpose: Acoustic coupling baths, nominally composed of degassed water, play important roles during transcranial focused ultrasound surgery. However, this large water bolus also degrades the quality of intraoperative magnetic resonance (MR) guidance imaging. In this study, we test the feasibility of using dilute, aqueous magnetite nanoparticle suspensions to suppress these image degradations while preserving acoustic compatibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!