The key neurochemical systems and structures involved in the predisposition to substance abuse and preference to ethanol (EtOH) are not known in detail but clearly dopamine (DA) is an important modulator of addiction. Recent data indicate that alpha-synuclein (alpha-syn), a pre-synaptic protein, plays a role in regulation of DA release from the pre-synaptic terminals in striatum and the expression of this protein is different after drug abuse or following abstinence. In the present work, we analysed stimulated DA overflow in the dorsal and ventral striatum in EtOH naïve alko alchohol (AA) and alko non-alchohol (ANA) rats selected for more than 100 generations for their differential EtOH preference. In the same structures, we studied the expression of alpha-syn using western blotting. AA rats, in comparison with ANA rats, showed a marked reduction of stimulated peak DA overflow and higher levels of alpha-syn in the nucleus accumbens core. In the same structure, DA re-uptake was increased in AA rats in comparison with ANA rats. The effects of EtOH at low (0.1 g/kg) and higher (3 mg/kg) doses on DA overflow measured in the nucleus accumbens shell were similar in both lines. These results indicate that high expression of alpha-syn may contribute to the reduced DA overflow and the possible activation of re-uptake in the nucleus accumbens core of AA rats in comparison with ANA rats.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2010.06844.xDOI Listing

Publication Analysis

Top Keywords

nucleus accumbens
16
ana rats
16
accumbens core
12
rats comparison
12
comparison ana
12
rats
8
expression alpha-syn
8
overflow
5
stimulated dopamine
4
dopamine overflow
4

Similar Publications

Unlabelled: Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes.

View Article and Find Full Text PDF

While CNS microglia have well-established roles in synapse pruning during neurodevelopment, only a few studies have identified roles for microglia in synapse formation. These studies focused on the cortex and primary sensory circuits during restricted developmental time periods, leaving substantial gaps in our understanding of the early developmental functions of microglia. Here we investigated how the absence of microglia impacts synaptic development in the nucleus accumbens (NAc), a region critical for emotional regulation and motivated behaviors and where dysfunction is implicated in psychiatric disorders that arise early in life.

View Article and Find Full Text PDF

Opioid reward and deep brain stimulation of the lateral hypothalamic area.

Vitam Horm

January 2025

Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Opioid use disorder (OUD) is considered a global health issue that affects various aspects of patients' lives and poses a considerable burden on society. Due to the high prevalence of remissions and relapses, novel therapeutic approaches are required to manage OUD. Deep brain stimulation (DBS) is one of the most promising clinical breakthroughs in translational neuroscience.

View Article and Find Full Text PDF

Exposure to ionizing radiation during manned deep space missions to Mars could lead to functional impairments of the central nervous system, which may compromise the success of the mission and affect the quality of life for returning astronauts. Along with radiation-induced changes in cognitive abilities and emotional status, the effects of increased motor activity were observed. The mechanisms behind these phenomena still remain unresolved.

View Article and Find Full Text PDF

Nuclear calcium signaling in D1 receptor-expressing neurons of the nucleus accumbens regulates molecular, cellular and behavioral adaptations to cocaine.

Biol Psychiatry

January 2025

Institute of Biology Paris-Seine, laboratory Neuroscience Paris-Seine, CNRS, INSERM, Sorbonne Université, UPMC Université Paris 06 F-75005, Paris, France. Electronic address:

Background: The persistence of cocaine-evoked adaptations relies on gene regulations within the reward circuit, especially in the ventral striatum (i.e., nucleus accumbens (NAc)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!